Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 75cc1ae

Browse files
committed
feat(analysis/normed/group/basic): add norm_multiset_sum_le (#16419)
1 parent ba346d8 commit 75cc1ae

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

src/analysis/normed/group/basic.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -235,6 +235,10 @@ lemma ne_zero_of_norm_ne_zero {g : E} : ∥g∥ ≠ 0 → g ≠ 0 := mt $ by { r
235235
@[nontriviality] lemma norm_of_subsingleton [subsingleton E] (x : E) : ∥x∥ = 0 :=
236236
by rw [subsingleton.elim x 0, norm_zero]
237237

238+
lemma norm_multiset_sum_le (m : multiset E) :
239+
∥m.sum∥ ≤ (m.map (λ x, ∥x∥)).sum :=
240+
m.le_sum_of_subadditive norm norm_zero norm_add_le
241+
238242
lemma norm_sum_le (s : finset ι) (f : ι → E) : ∥∑ i in s, f i∥ ≤ ∑ i in s, ∥f i∥ :=
239243
s.le_sum_of_subadditive norm norm_zero norm_add_le f
240244

@@ -708,6 +712,10 @@ by simp only [sub_eq_add_neg, edist_add_left, edist_neg_neg]
708712
@[simp] lemma edist_sub_right (g₁ g₂ h : E) : edist (g₁ - h) (g₂ - h) = edist g₁ g₂ :=
709713
by simpa only [sub_eq_add_neg] using edist_add_right _ _ _
710714

715+
lemma nnnorm_multiset_sum_le (m : multiset E) :
716+
∥m.sum∥₊ ≤ (m.map (λ x, ∥x∥₊)).sum :=
717+
m.le_sum_of_subadditive nnnorm nnnorm_zero nnnorm_add_le
718+
711719
lemma nnnorm_sum_le (s : finset ι) (f : ι → E) :
712720
∥∑ a in s, f a∥₊ ≤ ∑ a in s, ∥f a∥₊ :=
713721
s.le_sum_of_subadditive nnnorm nnnorm_zero nnnorm_add_le f

0 commit comments

Comments
 (0)