@@ -1486,7 +1486,8 @@ end inverse
1486
1486
section division
1487
1487
/-! ### Derivative of `x ↦ c x / d x` -/
1488
1488
1489
- variables {c d : 𝕜 → 𝕜} {c' d' : 𝕜}
1489
+ variables {𝕜' : Type *} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
1490
+ {c d : 𝕜 → 𝕜'} {c' d' : 𝕜'}
1490
1491
1491
1492
lemma has_deriv_within_at.div
1492
1493
(hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) (hx : d x ≠ 0 ) :
@@ -1545,28 +1546,40 @@ lemma deriv_within_div
1545
1546
deriv (λx, c x / d x) x = ((deriv c x) * d x - c x * (deriv d x)) / (d x)^2 :=
1546
1547
((hc.has_deriv_at).div (hd.has_deriv_at) hx).deriv
1547
1548
1548
- lemma differentiable_within_at.div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜} :
1549
+ lemma has_deriv_at.div_const (hc : has_deriv_at c c' x) (d : 𝕜') :
1550
+ has_deriv_at (λ x, c x / d) (c' / d) x :=
1551
+ by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
1552
+
1553
+ lemma has_deriv_within_at.div_const (hc : has_deriv_within_at c c' s x) (d : 𝕜') :
1554
+ has_deriv_within_at (λ x, c x / d) (c' / d) s x :=
1555
+ by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
1556
+
1557
+ lemma has_strict_deriv_at.div_const (hc : has_strict_deriv_at c c' x) (d : 𝕜') :
1558
+ has_strict_deriv_at (λ x, c x / d) (c' / d) x :=
1559
+ by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
1560
+
1561
+ lemma differentiable_within_at.div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜'} :
1549
1562
differentiable_within_at 𝕜 (λx, c x / d) s x :=
1550
- by simp [div_eq_inv_mul, differentiable_within_at.const_mul, hc]
1563
+ (hc.has_deriv_within_at.div_const _).differentiable_within_at
1551
1564
1552
- @[simp] lemma differentiable_at.div_const (hc : differentiable_at 𝕜 c x) {d : 𝕜} :
1565
+ @[simp] lemma differentiable_at.div_const (hc : differentiable_at 𝕜 c x) {d : 𝕜' } :
1553
1566
differentiable_at 𝕜 (λ x, c x / d) x :=
1554
- by simpa only [div_eq_mul_inv] using (hc.has_deriv_at.mul_const d⁻¹ ).differentiable_at
1567
+ (hc.has_deriv_at.div_const _ ).differentiable_at
1555
1568
1556
- lemma differentiable_on.div_const (hc : differentiable_on 𝕜 c s) {d : 𝕜} :
1569
+ lemma differentiable_on.div_const (hc : differentiable_on 𝕜 c s) {d : 𝕜' } :
1557
1570
differentiable_on 𝕜 (λx, c x / d) s :=
1558
- by simp [div_eq_inv_mul, differentiable_on.const_mul, hc]
1571
+ λ x hx, (hc x hx).div_const
1559
1572
1560
- @[simp] lemma differentiable.div_const (hc : differentiable 𝕜 c) {d : 𝕜} :
1573
+ @[simp] lemma differentiable.div_const (hc : differentiable 𝕜 c) {d : 𝕜' } :
1561
1574
differentiable 𝕜 (λx, c x / d) :=
1562
- by simp [div_eq_inv_mul, differentiable.const_mul, hc]
1575
+ λ x, (hc x).div_const
1563
1576
1564
- lemma deriv_within_div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜}
1577
+ lemma deriv_within_div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜' }
1565
1578
(hxs : unique_diff_within_at 𝕜 s x) :
1566
1579
deriv_within (λx, c x / d) s x = (deriv_within c s x) / d :=
1567
1580
by simp [div_eq_inv_mul, deriv_within_const_mul, hc, hxs]
1568
1581
1569
- @[simp] lemma deriv_div_const (d : 𝕜) :
1582
+ @[simp] lemma deriv_div_const (d : 𝕜' ) :
1570
1583
deriv (λx, c x / d) x = (deriv c x) / d :=
1571
1584
by simp only [div_eq_mul_inv, deriv_mul_const_field]
1572
1585
0 commit comments