@@ -5,7 +5,7 @@ Authors: Thomas Browning
5
5
-/
6
6
7
7
import group_theory.quotient_group
8
- import set_theory.cardinal
8
+ import set_theory.fincard
9
9
10
10
/-!
11
11
# Index of a Subgroup
@@ -39,7 +39,7 @@ variables {G : Type*} [group G] (H K L : subgroup G)
39
39
@[to_additive " The index of a subgroup as a natural number,
40
40
and returns 0 if the index is infinite." ]
41
41
noncomputable def index : ℕ :=
42
- (#( quotient_group.quotient H)).to_nat
42
+ nat.card ( quotient_group.quotient H)
43
43
44
44
/-- The relative index of a subgroup as a natural number,
45
45
and returns 0 if the relative index is infinite. -/
@@ -95,23 +95,38 @@ variables (H K L)
95
95
@[simp, to_additive] lemma index_top : (⊤ : subgroup G).index = 1 :=
96
96
cardinal.to_nat_eq_one_iff_unique.mpr ⟨quotient_group.subsingleton_quotient_top, ⟨1 ⟩⟩
97
97
98
- @[to_additive] lemma index_bot : (⊥ : subgroup G).index = cardinal.to_nat (#G) :=
98
+ @[simp, to_additive] lemma index_bot : (⊥ : subgroup G).index = nat.card G :=
99
99
cardinal.to_nat_congr (quotient_group.quotient_bot.to_equiv)
100
100
101
101
@[to_additive] lemma index_bot_eq_card [fintype G] : (⊥ : subgroup G).index = fintype.card G :=
102
- index_bot.trans cardinal.mk_to_nat_eq_card
102
+ index_bot.trans nat.card_eq_fintype_card
103
+
104
+ @[simp, to_additive] lemma relindex_top_left : (⊤ : subgroup G).relindex H = 1 :=
105
+ index_top
106
+
107
+ @[simp, to_additive] lemma relindex_top_right : H.relindex ⊤ = H.index :=
108
+ by rw [←relindex_mul_index (show H ≤ ⊤, from le_top), index_top, mul_one]
109
+
110
+ @[simp, to_additive] lemma relindex_bot_left : (⊥ : subgroup G).relindex H = nat.card H :=
111
+ by rw [relindex, bot_subgroup_of, index_bot]
112
+
113
+ @[to_additive] lemma relindex_bot_left_eq_card [fintype H] :
114
+ (⊥ : subgroup G).relindex H = fintype.card H :=
115
+ H.relindex_bot_left.trans nat.card_eq_fintype_card
116
+
117
+ @[simp, to_additive] lemma relindex_bot_right : H.relindex ⊥ = 1 :=
118
+ by rw [relindex, subgroup_of_bot_eq_top, index_top]
119
+
120
+ @[simp, to_additive] lemma relindex_self : H.relindex H = 1 :=
121
+ by rw [relindex, subgroup_of_self, index_top]
103
122
104
123
@[to_additive] lemma index_eq_card [fintype (quotient_group.quotient H)] :
105
124
H.index = fintype.card (quotient_group.quotient H) :=
106
- cardinal.mk_to_nat_eq_card
125
+ nat.card_eq_fintype_card
107
126
108
127
@[to_additive] lemma index_mul_card [fintype G] [hH : fintype H] :
109
128
H.index * fintype.card H = fintype.card G :=
110
- begin
111
- classical,
112
- rw H.index_eq_card,
113
- apply H.card_eq_card_quotient_mul_card_subgroup.symm,
114
- end
129
+ by rw [←relindex_bot_left_eq_card, ←index_bot_eq_card, mul_comm]; exact relindex_mul_index bot_le
115
130
116
131
@[to_additive] lemma index_dvd_card [fintype G] : H.index ∣ fintype.card G :=
117
132
begin
0 commit comments