@@ -45,48 +45,51 @@ variables {α : Type u} {β : Type v} {γ : Type w} {ι : Type x}
45
45
46
46
/-- A function `f` is Lipschitz continuous with constant `K ≥ 0` if for all `x, y`
47
47
we have `dist (f x) (f y) ≤ K * dist x y` -/
48
- def lipschitz_with [emetric_space α] [emetric_space β] (K : ℝ≥0 ) (f : α → β) :=
48
+ def lipschitz_with [pseudo_emetric_space α] [pseudo_emetric_space β] (K : ℝ≥0 ) (f : α → β) :=
49
49
∀x y, edist (f x) (f y) ≤ K * edist x y
50
50
51
- lemma lipschitz_with_iff_dist_le_mul [metric_space α] [metric_space β] {K : ℝ≥0 } {f : α → β} :
52
- lipschitz_with K f ↔ ∀ x y, dist (f x) (f y) ≤ K * dist x y :=
51
+ lemma lipschitz_with_iff_dist_le_mul [pseudo_metric_space α] [pseudo_metric_space β] {K : ℝ≥0 }
52
+ {f : α → β} : lipschitz_with K f ↔ ∀ x y, dist (f x) (f y) ≤ K * dist x y :=
53
53
by { simp only [lipschitz_with, edist_nndist, dist_nndist], norm_cast }
54
54
55
55
alias lipschitz_with_iff_dist_le_mul ↔ lipschitz_with.dist_le_mul lipschitz_with.of_dist_le_mul
56
56
57
57
/-- A function `f` is Lipschitz continuous with constant `K ≥ 0` on `s` if for all `x, y` in `s`
58
58
we have `dist (f x) (f y) ≤ K * dist x y` -/
59
- def lipschitz_on_with [emetric_space α] [emetric_space β] (K : ℝ≥0 ) (f : α → β) (s : set α) :=
59
+ def lipschitz_on_with [pseudo_emetric_space α] [pseudo_emetric_space β] (K : ℝ≥0 ) (f : α → β)
60
+ (s : set α) :=
60
61
∀ ⦃x⦄ (hx : x ∈ s) ⦃y⦄ (hy : y ∈ s), edist (f x) (f y) ≤ K * edist x y
61
62
62
- @[simp] lemma lipschitz_on_with_empty [emetric_space α] [emetric_space β] (K : ℝ≥0 ) (f : α → β) :
63
- lipschitz_on_with K f ∅ :=
63
+ @[simp] lemma lipschitz_on_with_empty [pseudo_emetric_space α] [pseudo_emetric_space β] (K : ℝ≥0 )
64
+ (f : α → β) : lipschitz_on_with K f ∅ :=
64
65
λ x x_in y y_in, false.elim x_in
65
66
66
- lemma lipschitz_on_with.mono [emetric_space α] [emetric_space β] {K : ℝ≥0 } {s t : set α} {f : α → β }
67
- (hf : lipschitz_on_with K f t) (h : s ⊆ t) : lipschitz_on_with K f s :=
67
+ lemma lipschitz_on_with.mono [pseudo_emetric_space α] [pseudo_emetric_space β] {K : ℝ≥0 }
68
+ {s t : set α} {f : α → β} (hf : lipschitz_on_with K f t) (h : s ⊆ t) : lipschitz_on_with K f s :=
68
69
λ x x_in y y_in, hf (h x_in) (h y_in)
69
70
70
- lemma lipschitz_on_with_iff_dist_le_mul [metric_space α] [metric_space β] {K : ℝ≥0 } {s : set α}
71
- {f : α → β} : lipschitz_on_with K f s ↔ ∀ (x ∈ s) (y ∈ s), dist (f x) (f y) ≤ K * dist x y :=
71
+ lemma lipschitz_on_with_iff_dist_le_mul [pseudo_metric_space α] [pseudo_metric_space β] {K : ℝ≥0 }
72
+ {s : set α} {f : α → β} :
73
+ lipschitz_on_with K f s ↔ ∀ (x ∈ s) (y ∈ s), dist (f x) (f y) ≤ K * dist x y :=
72
74
by { simp only [lipschitz_on_with, edist_nndist, dist_nndist], norm_cast }
73
75
74
76
alias lipschitz_on_with_iff_dist_le_mul ↔
75
77
lipschitz_on_with.dist_le_mul lipschitz_on_with.of_dist_le_mul
76
78
77
- @[simp] lemma lipschitz_on_univ [emetric_space α] [emetric_space β] {K : ℝ≥0 } {f : α → β} :
78
- lipschitz_on_with K f univ ↔ lipschitz_with K f :=
79
+ @[simp] lemma lipschitz_on_univ [pseudo_emetric_space α] [pseudo_emetric_space β] {K : ℝ≥0 }
80
+ {f : α → β} : lipschitz_on_with K f univ ↔ lipschitz_with K f :=
79
81
by simp [lipschitz_on_with, lipschitz_with]
80
82
81
- lemma lipschitz_on_with_iff_restrict [emetric_space α] [emetric_space β] {K : ℝ≥0 }
83
+ lemma lipschitz_on_with_iff_restrict [pseudo_emetric_space α] [pseudo_emetric_space β] {K : ℝ≥0 }
82
84
{f : α → β} {s : set α} : lipschitz_on_with K f s ↔ lipschitz_with K (s.restrict f) :=
83
85
by simp only [lipschitz_on_with, lipschitz_with, set_coe.forall', restrict, subtype.edist_eq]
84
86
85
87
namespace lipschitz_with
86
88
87
89
section emetric
88
90
89
- variables [emetric_space α] [emetric_space β] [emetric_space γ] {K : ℝ≥0 } {f : α → β}
91
+ variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ]
92
+ variables {K : ℝ≥0 } {f : α → β}
90
93
91
94
lemma edist_le_mul (h : lipschitz_with K f) (x y : α) : edist (f x) (f y) ≤ K * edist x y := h x y
92
95
@@ -221,7 +224,7 @@ end emetric
221
224
222
225
section metric
223
226
224
- variables [metric_space α] [metric_space β] [metric_space γ] {K : ℝ≥0 }
227
+ variables [pseudo_metric_space α] [pseudo_metric_space β] [pseudo_metric_space γ] {K : ℝ≥0 }
225
228
226
229
protected lemma of_dist_le' {f : α → β} {K : ℝ} (h : ∀ x y, dist (f x) (f y) ≤ K * dist x y) :
227
230
lipschitz_with (nnreal.of_real K) f :=
@@ -296,7 +299,8 @@ end lipschitz_with
296
299
297
300
namespace lipschitz_on_with
298
301
299
- variables [emetric_space α] [emetric_space β] [emetric_space γ] {K : ℝ≥0 } {s : set α} {f : α → β}
302
+ variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ]
303
+ variables {K : ℝ≥0 } {s : set α} {f : α → β}
300
304
301
305
protected lemma uniform_continuous_on (hf : lipschitz_on_with K f s) : uniform_continuous_on f s :=
302
306
uniform_continuous_on_iff_restrict.mpr (lipschitz_on_with_iff_restrict.mp hf).uniform_continuous
0 commit comments