Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 7f46c81

Browse files
committed
feat(chain_complex): lemmas about eq_to_hom (#6250)
Adds two lemmas relating `eq_to_hom` to differentials and chain maps. Useful in the ubiquitous circumstance of having to apply identities in the index of a chain complex. Also add some `@[reassoc]` tags for convenience. Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent 8d3efb7 commit 7f46c81

File tree

1 file changed

+20
-3
lines changed

1 file changed

+20
-3
lines changed

src/algebra/homology/chain_complex.lean

Lines changed: 20 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ namespace homological_complex
6565
variables {V}
6666
variables {β : Type} [add_comm_group β] {b : β}
6767

68-
@[simp]
68+
@[simp, reassoc]
6969
lemma d_squared (C : homological_complex V b) (i : β) :
7070
C.d i ≫ C.d (i+b) = 0 :=
7171
congr_fun (C.d_squared) i
@@ -75,15 +75,32 @@ A convenience lemma for morphisms of cochain complexes,
7575
picking out one component of the commutation relation.
7676
-/
7777
-- I haven't been able to get this to work with projection notation: `f.comm_at i`
78-
@[simp]
78+
@[simp, reassoc]
7979
lemma comm_at {C D : homological_complex V b} (f : C ⟶ D) (i : β) :
8080
C.d i ≫ f.f (i+b) = f.f i ≫ D.d i :=
8181
congr_fun f.comm i
8282

83-
@[simp]
83+
@[simp, reassoc]
8484
lemma comm {C D : homological_complex V b} (f : C ⟶ D) : C.d ≫ f.f⟦1⟧' = f.f ≫ D.d :=
8585
differential_object.hom.comm _
8686

87+
@[reassoc]
88+
lemma eq_to_hom_d (C : homological_complex V b) {i j : β} (h : i = j) :
89+
eq_to_hom (congr_arg C.X h) ≫ C.d j =
90+
C.d i ≫ eq_to_hom (congr_arg C.X (congr_arg (λ a, a + b) h) : _) :=
91+
begin
92+
induction h,
93+
simp,
94+
end
95+
96+
@[reassoc]
97+
lemma eq_to_hom_f {C D : homological_complex V b} (f : C ⟶ D) {n m : β} (h : n = m) :
98+
eq_to_hom (congr_arg C.X h) ≫ f.f m = f.f n ≫ eq_to_hom (congr_arg D.X h) :=
99+
begin
100+
induction h,
101+
simp
102+
end
103+
87104
variables (V)
88105

89106
/-- The forgetful functor from cochain complexes to graded objects, forgetting the differential. -/

0 commit comments

Comments
 (0)