Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 80ffad0

Browse files
committed
chore(data/dfinsupp): Make some lemma arguments explicit (#4803)
This file is long and this is not exhaustive, but this hits most of the simpler ones
1 parent 7a37dd4 commit 80ffad0

File tree

3 files changed

+19
-19
lines changed

3 files changed

+19
-19
lines changed

src/algebra/lie/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -310,7 +310,7 @@ instance : lie_ring (⨁ i, L i) :=
310310
..(infer_instance : add_comm_group _) }
311311

312312
@[simp] lemma bracket_apply {x y : (⨁ i, L i)} {i : ι} :
313-
⁅x, y⁆ i = ⁅x i, y i⁆ := zip_with_apply
313+
⁅x, y⁆ i = ⁅x i, y i⁆ := zip_with_apply _ _ x y i
314314

315315
/-- The direct sum of Lie algebras carries a natural Lie algebra structure. -/
316316
instance : lie_algebra R (⨁ i, L i) :=

src/data/dfinsupp.lean

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ instance : has_coe_to_fun (Π₀ i, β i) :=
6262
instance : has_zero (Π₀ i, β i) := ⟨⟦⟨λ i, 0, ∅, λ i, or.inr rfl⟩⟧⟩
6363
instance : inhabited (Π₀ i, β i) := ⟨0
6464

65-
@[simp] lemma zero_apply {i : ι} : (0 : Π₀ i, β i) i = 0 := rfl
65+
@[simp] lemma zero_apply (i : ι) : (0 : Π₀ i, β i) i = 0 := rfl
6666

6767
@[ext]
6868
lemma ext {f g : Π₀ i, β i} (H : ∀ i, f i = g i) : f = g :=
@@ -76,7 +76,7 @@ quotient.lift_on g (λ x, ⟦(⟨λ i, f i (x.1 i), x.2,
7676
quotient.sound $ λ i, by simp only [H i]
7777

7878
@[simp] lemma map_range_apply
79-
{f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} {i : ι} :
79+
(f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (g : Π₀ i, β₁ i) (i : ι) :
8080
map_range f hf g i = f i (g i) :=
8181
quotient.induction_on g $ λ x, rfl
8282

@@ -96,7 +96,7 @@ begin
9696
end
9797

9898
@[simp] lemma zip_with_apply
99-
{f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} {i : ι} :
99+
(f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) (g₁ : Π₀ i, β₁ i) (g₂ : Π₀ i, β₂ i) (i : ι) :
100100
zip_with f hf g₁ g₂ i = f i (g₁ i) (g₂ i) :=
101101
quotient.induction_on₂ g₁ g₂ $ λ _ _, rfl
102102

@@ -107,9 +107,9 @@ section algebra
107107
instance [Π i, add_monoid (β i)] : has_add (Π₀ i, β i) :=
108108
⟨zip_with (λ _, (+)) (λ _, add_zero 0)⟩
109109

110-
@[simp] lemma add_apply [Π i, add_monoid (β i)] {g₁ g₂ : Π₀ i, β i} {i : ι} :
110+
@[simp] lemma add_apply [Π i, add_monoid (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) :
111111
(g₁ + g₂) i = g₁ i + g₂ i :=
112-
zip_with_apply
112+
zip_with_apply _ _ g₁ g₂ i
113113

114114
instance [Π i, add_monoid (β i)] : add_monoid (Π₀ i, β i) :=
115115
{ add_monoid .
@@ -120,7 +120,7 @@ instance [Π i, add_monoid (β i)] : add_monoid (Π₀ i, β i) :=
120120
add_zero := λ f, ext $ λ i, by simp only [add_apply, zero_apply, add_zero] }
121121

122122
instance [Π i, add_monoid (β i)] {i : ι} : is_add_monoid_hom (λ g : Π₀ i : ι, β i, g i) :=
123-
{ map_add := λ _ _, add_apply, map_zero := zero_apply }
123+
{ map_add := λ f g, add_apply f g i, map_zero := zero_apply i }
124124

125125
instance [Π i, add_group (β i)] : has_neg (Π₀ i, β i) :=
126126
⟨λ f, f.map_range (λ _, has_neg.neg) (λ _, neg_zero)⟩
@@ -129,15 +129,15 @@ instance [Π i, add_comm_monoid (β i)] : add_comm_monoid (Π₀ i, β i) :=
129129
{ add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm],
130130
.. dfinsupp.add_monoid }
131131

132-
@[simp] lemma neg_apply [Π i, add_group (β i)] {g : Π₀ i, β i} {i : ι} : (- g) i = - g i :=
133-
map_range_apply
132+
@[simp] lemma neg_apply [Π i, add_group (β i)] (g : Π₀ i, β i) (i : ι) : (- g) i = - g i :=
133+
map_range_apply _ _ g i
134134

135135
instance [Π i, add_group (β i)] : add_group (Π₀ i, β i) :=
136136
{ add_left_neg := λ f, ext $ λ i, by simp only [add_apply, neg_apply, zero_apply, add_left_neg],
137137
.. dfinsupp.add_monoid,
138138
.. (infer_instance : has_neg (Π₀ i, β i)) }
139139

140-
@[simp] lemma sub_apply [Π i, add_group (β i)] {g₁ g₂ : Π₀ i, β i} {i : ι} :
140+
@[simp] lemma sub_apply [Π i, add_group (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) :
141141
(g₁ - g₂) i = g₁ i - g₂ i :=
142142
by rw [sub_eq_add_neg]; simp [sub_eq_add_neg]
143143

@@ -153,9 +153,9 @@ def to_has_scalar {γ : Type w} [semiring γ] [Π i, add_comm_group (β i)] [Π
153153
local attribute [instance] to_has_scalar
154154

155155
@[simp] lemma smul_apply {γ : Type w} [semiring γ] [Π i, add_comm_group (β i)]
156-
[Π i, semimodule γ (β i)] {i : ι} {b : γ} {v : Π₀ i, β i} :
156+
[Π i, semimodule γ (β i)] (b : γ) (v : Π₀ i, β i) (i : ι) :
157157
(b • v) i = b • (v i) :=
158-
map_range_apply
158+
map_range_apply _ _ v i
159159

160160
/-- Dependent functions with finite support inherit a semimodule structure from such a structure on
161161
each coordinate. -/
@@ -179,22 +179,22 @@ quotient.lift_on f (λ x, ⟦(⟨λ i, if p i then x.1 i else 0, x.2,
179179
quotient.sound $ λ i, by simp only [H i]
180180

181181
@[simp] lemma filter_apply [Π i, has_zero (β i)]
182-
{p : ι → Prop} [decidable_pred p] {i : ι} {f : Π₀ i, β i} :
182+
(p : ι → Prop) [decidable_pred p] (i : ι) (f : Π₀ i, β i) :
183183
f.filter p i = if p i then f i else 0 :=
184184
quotient.induction_on f $ λ x, rfl
185185

186186
lemma filter_apply_pos [Π i, has_zero (β i)]
187-
{p : ι → Prop} [decidable_pred p] {f : Π₀ i, β i} {i : ι} (h : p i) :
187+
{p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : p i) :
188188
f.filter p i = f i :=
189189
by simp only [filter_apply, if_pos h]
190190

191191
lemma filter_apply_neg [Π i, has_zero (β i)]
192-
{p : ι → Prop} [decidable_pred p] {f : Π₀ i, β i} {i : ι} (h : ¬ p i) :
192+
{p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : ¬ p i) :
193193
f.filter p i = 0 :=
194194
by simp only [filter_apply, if_neg h]
195195

196-
lemma filter_pos_add_filter_neg [Π i, add_monoid (β i)] {f : Π₀ i, β i}
197-
{p : ι → Prop} [decidable_pred p] :
196+
lemma filter_pos_add_filter_neg [Π i, add_monoid (β i)] (f : Π₀ i, β i)
197+
(p : ι → Prop) [decidable_pred p] :
198198
f.filter p + f.filter (λi, ¬ p i) = f :=
199199
ext $ λ i, by simp only [add_apply, filter_apply]; split_ifs; simp only [add_zero, zero_add]
200200

src/linear_algebra/direct_sum_module.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -119,8 +119,8 @@ variables (ι M)
119119
/-- The projection map onto one component, as a linear map. -/
120120
def component (i : ι) : (⨁ i, M i) →ₗ[R] M i :=
121121
{ to_fun := λ f, f i,
122-
map_add' := λ _ _, dfinsupp.add_apply,
123-
map_smul' := λ _ _, dfinsupp.smul_apply }
122+
map_add' := λ f g, dfinsupp.add_apply f g i,
123+
map_smul' := λ c f, dfinsupp.smul_apply c f i}
124124

125125
variables {ι M}
126126

0 commit comments

Comments
 (0)