Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8341d16

Browse files
committed
feat(linear_algebra/finite_dimensional): make finite_dimensional_bot an instance (#9053)
This was previously made into a local instance in several places, but there appears to be no reason it can't be a global instance. cf discussion at #8884.
1 parent b4a88e2 commit 8341d16

File tree

2 files changed

+2
-6
lines changed

2 files changed

+2
-6
lines changed

src/analysis/normed_space/inner_product.lean

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2211,8 +2211,6 @@ end
22112211
@[simp] lemma orthogonal_projection_mem_subspace_eq_self (v : K) : orthogonal_projection K v = v :=
22122212
by { ext, apply eq_orthogonal_projection_of_mem_of_inner_eq_zero; simp }
22132213

2214-
local attribute [instance] finite_dimensional_bot
2215-
22162214
/-- The orthogonal projection onto the trivial submodule is the zero map. -/
22172215
@[simp] lemma orthogonal_projection_bot : orthogonal_projection (⊥ : submodule 𝕜 E) = 0 :=
22182216
by ext

src/linear_algebra/finite_dimensional.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -608,12 +608,11 @@ finrank_eq_zero_of_basis_imp_false (λ s b, h ⟨s, ⟨b⟩⟩)
608608

609609
variables (K V)
610610

611-
lemma finite_dimensional_bot : finite_dimensional K (⊥ : submodule K V) :=
611+
instance finite_dimensional_bot : finite_dimensional K (⊥ : submodule K V) :=
612612
finite_dimensional_of_dim_eq_zero $ by simp
613613

614614
@[simp] lemma finrank_bot : finrank K (⊥ : submodule K V) = 0 :=
615615
begin
616-
haveI := finite_dimensional_bot K V,
617616
convert finrank_eq_dim K (⊥ : submodule K V),
618617
rw dim_bot, norm_cast
619618
end
@@ -1426,13 +1425,12 @@ by { rw ← algebra.top_to_submodule, refl }
14261425
lemma subalgebra.dim_top : module.rank F (⊤ : subalgebra F E) = module.rank F E :=
14271426
by { rw subalgebra_top_dim_eq_submodule_top_dim, exact dim_top F E }
14281427

1429-
lemma subalgebra.finite_dimensional_bot : finite_dimensional F (⊥ : subalgebra F E) :=
1428+
instance subalgebra.finite_dimensional_bot : finite_dimensional F (⊥ : subalgebra F E) :=
14301429
finite_dimensional_of_dim_eq_one subalgebra.dim_bot
14311430

14321431
@[simp]
14331432
lemma subalgebra.finrank_bot : finrank F (⊥ : subalgebra F E) = 1 :=
14341433
begin
1435-
haveI : finite_dimensional F (⊥ : subalgebra F E) := subalgebra.finite_dimensional_bot,
14361434
have : module.rank F (⊥ : subalgebra F E) = 1 := subalgebra.dim_bot,
14371435
rw ← finrank_eq_dim at this,
14381436
norm_cast at *,

0 commit comments

Comments
 (0)