@@ -223,15 +223,15 @@ def mfderiv_within (f : M → M') (s : set M) (x : M) : tangent_space I x →L[
223
223
if h : mdifferentiable_within_at I I' f s x then
224
224
(fderiv_within 𝕜 (written_in_ext_chart_at I I' x f) ((ext_chart_at I x).inv_fun ⁻¹' s ∩ range I.to_fun)
225
225
((ext_chart_at I x).to_fun x) : _)
226
- else continuous_linear_map.zero
226
+ else 0
227
227
228
228
/-- Let `f` be a function between two smooth manifolds. Then `mfderiv I I' f x` is the derivative of
229
229
`f` at `x`, as a continuous linear map from the tangent space at `x` to the tangent space at `f x`. -/
230
230
def mfderiv (f : M → M') (x : M) : tangent_space I x →L[𝕜] tangent_space I' (f x) :=
231
231
if h : mdifferentiable_at I I' f x then
232
232
(fderiv_within 𝕜 (written_in_ext_chart_at I I' x f : E → E') (range I.to_fun)
233
233
((ext_chart_at I x).to_fun x) : _)
234
- else continuous_linear_map.zero
234
+ else 0
235
235
236
236
set_option class.instance_max_depth 60
237
237
@@ -351,11 +351,11 @@ set_option class.instance_max_depth 60
351
351
352
352
lemma mfderiv_within_zero_of_not_mdifferentiable_within_at
353
353
(h : ¬ mdifferentiable_within_at I I' f s x) : mfderiv_within I I' f s x = 0 :=
354
- by { simp [mfderiv_within, h], refl }
354
+ by simp [mfderiv_within, h]
355
355
356
356
lemma mfderiv_zero_of_not_mdifferentiable_at
357
357
(h : ¬ mdifferentiable_at I I' f x) : mfderiv I I' f x = 0 :=
358
- by { simp [mfderiv, h], refl }
358
+ by simp [mfderiv, h]
359
359
360
360
theorem has_mfderiv_within_at.mono (h : has_mfderiv_within_at I I' f t x f') (hst : s ⊆ t) :
361
361
has_mfderiv_within_at I I' f s x f' :=
@@ -676,8 +676,8 @@ begin
676
676
by_cases h : mdifferentiable_within_at I I' f s x,
677
677
{ exact ((h.has_mfderiv_within_at).congr_of_mem_nhds_within hL hx).mfderiv_within hs },
678
678
{ unfold mfderiv_within,
679
- rw [dif_neg, dif_neg],
680
- assumption ,
679
+ rw [dif_neg h , dif_neg],
680
+ refl ,
681
681
rwa ← mdifferentiable_within_at_congr_of_mem_nhds_within I I' hL hx }
682
682
end
683
683
@@ -896,7 +896,7 @@ variables {E' : Type*} [normed_group E'] [normed_space 𝕜 E']
896
896
897
897
lemma has_mfderiv_at_const (c : M') (x : M) :
898
898
has_mfderiv_at I I' (λy : M, c) x
899
- (continuous_linear_map.zero : tangent_space I x →L[𝕜] tangent_space I' c) :=
899
+ (0 : tangent_space I x →L[𝕜] tangent_space I' c) :=
900
900
begin
901
901
refine ⟨continuous_const.continuous_at, _⟩,
902
902
have : (ext_chart_at I' c).to_fun ∘ (λ (y : M), c) ∘ (ext_chart_at I x).inv_fun =
907
907
908
908
theorem has_mfderiv_within_at_const (c : M') (s : set M) (x : M) :
909
909
has_mfderiv_within_at I I' (λy : M, c) s x
910
- (continuous_linear_map.zero : tangent_space I x →L[𝕜] tangent_space I' c) :=
910
+ (0 : tangent_space I x →L[𝕜] tangent_space I' c) :=
911
911
(has_mfderiv_at_const I I' c x).has_mfderiv_within_at
912
912
913
913
lemma mdifferentiable_at_const : mdifferentiable_at I I' (λy : M, c) x :=
@@ -923,12 +923,12 @@ lemma mdifferentiable_on_const : mdifferentiable_on I I' (λy : M, c) s :=
923
923
(mdifferentiable_const I I').mdifferentiable_on
924
924
925
925
@[simp] lemma mfderiv_const : mfderiv I I' (λy : M, c) x =
926
- (continuous_linear_map.zero : tangent_space I x →L[𝕜] tangent_space I' c) :=
926
+ (0 : tangent_space I x →L[𝕜] tangent_space I' c) :=
927
927
has_mfderiv_at.mfderiv (has_mfderiv_at_const I I' c x)
928
928
929
929
lemma mfderiv_within_const (hxs : unique_mdiff_within_at I s x) :
930
930
mfderiv_within I I' (λy : M, c) s x =
931
- (continuous_linear_map.zero : tangent_space I x →L[𝕜] tangent_space I' c) :=
931
+ (0 : tangent_space I x →L[𝕜] tangent_space I' c) :=
932
932
begin
933
933
rw mdifferentiable.mfderiv_within (mdifferentiable_at_const I I') hxs,
934
934
{ exact mfderiv_const I I' },
@@ -1140,8 +1140,7 @@ begin
1140
1140
change ¬(∃(f' : tangent_space (model_with_corners_self 𝕜 E) x →L[𝕜]
1141
1141
tangent_space (model_with_corners_self 𝕜 E') (f x)),
1142
1142
has_fderiv_within_at f f' s x) at h,
1143
- simp [fderiv_within, h],
1144
- refl }
1143
+ simp [fderiv_within, h] }
1145
1144
end
1146
1145
1147
1146
/-- For maps between vector spaces, mfderiv and fderiv coincide -/
0 commit comments