|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Manuel Candales. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Manuel Candales |
| 5 | +-/ |
| 6 | +import data.real.basic |
| 7 | + |
| 8 | +/-! |
| 9 | +# IMO 2005 Q3 |
| 10 | +Let `x`, `y` and `z` be positive real numbers such that `xyz ≥ 1`. Prove that: |
| 11 | +`(x^5 - x^2)/(x^5 + y^2 + z^2) + (y^5 - y^2)/(y^5 + z^2 + x^2) + (z^5 - z^2)/(z^5 + x^2 + y^2) ≥ 0` |
| 12 | +
|
| 13 | +# Solution |
| 14 | +The solution by Iurie Boreico from Moldova is presented, which won a special prize during the exam. |
| 15 | +The key insight is that `(x^5-x^2)/(x^5+y^2+z^2) ≥ (x^2-y*z)/(x^2+y^2+z^2)`, which is proven by |
| 16 | +factoring `(x^5-x^2)/(x^5+y^2+z^2) - (x^5-x^2)/(x^3*(x^2+y^2+z^2))` into a non-negative expression |
| 17 | +and then making use of `xyz ≥ 1` to show `(x^5-x^2)/(x^3*(x^2+y^2+z^2)) ≥ (x^2-y*z)/(x^2+y^2+z^2)`. |
| 18 | +-/ |
| 19 | + |
| 20 | +lemma key_insight (x y z : ℝ) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h : x*y*z ≥ 1) : |
| 21 | + (x^5-x^2)/(x^5+y^2+z^2) ≥ (x^2-y*z)/(x^2+y^2+z^2) := |
| 22 | +begin |
| 23 | + have h₁ : x^5+y^2+z^2 > 0, linarith [pow_pos hx 5, pow_pos hy 2, pow_pos hz 2], |
| 24 | + have h₂ : x^3 > 0, exact pow_pos hx 3, |
| 25 | + have h₃ : x^2+y^2+z^2 > 0, linarith [pow_pos hx 2, pow_pos hy 2, pow_pos hz 2], |
| 26 | + have h₄ : x^3*(x^2+y^2+z^2) > 0, exact mul_pos h₂ h₃, |
| 27 | + |
| 28 | + have key : (x^5-x^2)/(x^5+y^2+z^2) - (x^5-x^2)/(x^3*(x^2+y^2+z^2)) |
| 29 | + = ((x^3 - 1)^2*x^2*(y^2 + z^2))/((x^5+y^2+z^2)*(x^3*(x^2+y^2+z^2))), |
| 30 | + calc (x^5-x^2)/(x^5+y^2+z^2) - (x^5-x^2)/(x^3*(x^2+y^2+z^2)) |
| 31 | + = ((x^5-x^2)*(x^3*(x^2+y^2+z^2))-(x^5+y^2+z^2)*(x^5-x^2))/((x^5+y^2+z^2)*(x^3*(x^2+y^2+z^2))): |
| 32 | + by exact div_sub_div _ _ (ne_of_gt h₁) (ne_of_gt h₄) -- a/b - c/d = (a*d-b*c)/(b*d) |
| 33 | + ... = ((x^3 - 1)^2*x^2*(y^2 + z^2))/((x^5+y^2+z^2)*(x^3*(x^2+y^2+z^2))) : |
| 34 | + by ring, |
| 35 | + |
| 36 | + have h₅ : ((x^3 - 1)^2*x^2*(y^2 + z^2))/((x^5+y^2+z^2)*(x^3*(x^2+y^2+z^2))) ≥ 0, |
| 37 | + { refine div_nonneg _ _, |
| 38 | + refine mul_nonneg (mul_nonneg (pow_two_nonneg _) (pow_two_nonneg _)) _, |
| 39 | + exact add_nonneg (pow_two_nonneg _) (pow_two_nonneg _), |
| 40 | + exact le_of_lt (mul_pos h₁ h₄) }, |
| 41 | + |
| 42 | + calc (x^5-x^2)/(x^5+y^2+z^2) |
| 43 | + ≥ (x^5-x^2)/(x^3*(x^2+y^2+z^2)) : by linarith [key, h₅] |
| 44 | + ... ≥ (x^5-x^2*(x*y*z))/(x^3*(x^2+y^2+z^2)) : |
| 45 | + by { refine (div_le_div_right h₄).mpr _, simp, |
| 46 | + exact (le_mul_iff_one_le_right (pow_pos hx 2)).mpr h } |
| 47 | + ... = (x^2-y*z)/(x^2+y^2+z^2) : |
| 48 | + by { field_simp [ne_of_gt h₂, ne_of_gt h₃], ring }, |
| 49 | +end |
| 50 | + |
| 51 | +theorem imo2005_q3 (x y z : ℝ) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h : x*y*z ≥ 1) : |
| 52 | + (x^5-x^2)/(x^5+y^2+z^2) + (y^5-y^2)/(y^5+z^2+x^2) + (z^5-z^2)/(z^5+x^2+y^2) ≥ 0 := |
| 53 | +begin |
| 54 | + calc (x^5-x^2)/(x^5+y^2+z^2) + (y^5-y^2)/(y^5+z^2+x^2) + (z^5-z^2)/(z^5+x^2+y^2) |
| 55 | + ≥ (x^2-y*z)/(x^2+y^2+z^2) + (y^2-z*x)/(y^2+z^2+x^2) + (z^2-x*y)/(z^2+x^2+y^2) : |
| 56 | + by { linarith [key_insight x y z hx hy hz h, |
| 57 | + key_insight y z x hy hz hx (by linarith [h]), |
| 58 | + key_insight z x y hz hx hy (by linarith [h])] } |
| 59 | + ... = (x^2 + y^2 + z^2 - y*z - z*x - x*y) / (x^2+y^2+z^2) : |
| 60 | + by { have h₁ : y^2+z^2+x^2 = x^2+y^2+z^2, linarith, |
| 61 | + have h₂ : z^2+x^2+y^2 = x^2+y^2+z^2, linarith, |
| 62 | + rw [h₁, h₂], ring } |
| 63 | + ... = 1/2*( (x-y)^2 + (y-z)^2 + (z-x)^2 ) / (x^2+y^2+z^2) : by ring |
| 64 | + ... ≥ 0 : |
| 65 | + by { exact div_nonneg |
| 66 | + (by linarith [pow_two_nonneg (x-y), pow_two_nonneg (y-z), pow_two_nonneg (z-x)]) |
| 67 | + (by linarith [pow_two_nonneg x, pow_two_nonneg y, pow_two_nonneg z]) }, |
| 68 | +end |
0 commit comments