@@ -169,6 +169,8 @@ def mk' (f : P1 → P2) (f' : V1 →ₗ[k] V2) (p : P1) (h : ∀ p' : P1, f p' =
169
169
instance : add_comm_group (P1 →ᵃ[k] V2) :=
170
170
{ zero := ⟨0 , 0 , λ p v, (zero_vadd _ _).symm⟩,
171
171
add := λ f g, ⟨f + g, f.linear + g.linear, λ p v, by simp [add_add_add_comm]⟩,
172
+ sub := λ f g, ⟨f - g, f.linear - g.linear, λ p v, by simp [sub_add_comm]⟩,
173
+ sub_eq_add_neg := λ f g, ext $ λ p, sub_eq_add_neg _ _,
172
174
neg := λ f, ⟨-f, -f.linear, λ p v, by simp [add_comm]⟩,
173
175
add_assoc := λ f₁ f₂ f₃, ext $ λ p, add_assoc _ _ _,
174
176
zero_add := λ f, ext $ λ p, zero_add (f p),
@@ -180,9 +182,10 @@ instance : add_comm_group (P1 →ᵃ[k] V2) :=
180
182
@[simp] lemma zero_linear : (0 : P1 →ᵃ[k] V2).linear = 0 := rfl
181
183
@[simp, norm_cast] lemma coe_add (f g : P1 →ᵃ[k] V2) : ⇑(f + g) = f + g := rfl
182
184
@[simp, norm_cast] lemma coe_neg (f : P1 →ᵃ[k] V2) : ⇑(-f) = -f := rfl
183
- @[simp, norm_cast] lemma coe_sub (f g : P1 →ᵃ[k] V2) : ⇑(f - g) = f - g := by simp [sub_eq_add_neg]
184
- @[simp]
185
- lemma add_linear (f g : P1 →ᵃ[k] V2) : (f + g).linear = f.linear + g.linear := rfl
185
+ @[simp, norm_cast] lemma coe_sub (f g : P1 →ᵃ[k] V2) : ⇑(f - g) = f - g := rfl
186
+ @[simp] lemma add_linear (f g : P1 →ᵃ[k] V2) : (f + g).linear = f.linear + g.linear := rfl
187
+ @[simp] lemma sub_linear (f g : P1 →ᵃ[k] V2) : (f - g).linear = f.linear - g.linear := rfl
188
+ @[simp] lemma neg_linear (f : P1 →ᵃ[k] V2) : (-f).linear = -f.linear := rfl
186
189
187
190
/-- The space of affine maps from `P1` to `P2` is an affine space over the space of affine maps
188
191
from `P1` to the vector space `V2` corresponding to `P2`. -/
0 commit comments