@@ -1043,22 +1043,27 @@ def cofinite (μ : measure α) : filter α :=
1043
1043
1044
1044
lemma mem_cofinite {s : set α} : s ∈ μ.cofinite ↔ μ sᶜ < ⊤ := iff.rfl
1045
1045
1046
+ lemma compl_mem_cofinite {s : set α} : sᶜ ∈ μ.cofinite ↔ μ s < ⊤ :=
1047
+ by rw [mem_cofinite, compl_compl]
1048
+
1046
1049
lemma eventually_cofinite {p : α → Prop } : (∀ᶠ x in μ.cofinite, p x) ↔ μ {x | ¬p x} < ⊤ := iff.rfl
1047
1050
1048
1051
end measure
1049
1052
1050
1053
variables {α : Type *} {β : Type *} [measurable_space α] {μ : measure α}
1051
1054
1052
- notation `∀ᵐ` binders `∂` μ `, ` r:(scoped P, filter.eventually P (measure.ae μ)) := r
1055
+ notation `∀ᵐ` binders ` ∂` μ `, ` r:(scoped P, filter.eventually P (measure.ae μ)) := r
1053
1056
notation f ` =ᵐ[`:50 μ:50 `] `:0 g:50 := f =ᶠ[measure.ae μ] g
1054
1057
notation f ` ≤ᵐ[`:50 μ:50 `] `:0 g:50 := f ≤ᶠ[measure.ae μ] g
1055
1058
1056
1059
lemma mem_ae_iff {s : set α} : s ∈ μ.ae ↔ μ sᶜ = 0 := iff.rfl
1057
1060
1058
1061
lemma ae_iff {p : α → Prop } : (∀ᵐ a ∂ μ, p a) ↔ μ { a | ¬ p a } = 0 := iff.rfl
1059
1062
1063
+ lemma compl_mem_ae_iff {s : set α} : sᶜ ∈ μ.ae ↔ μ s = 0 := by simp only [mem_ae_iff, compl_compl]
1064
+
1060
1065
lemma measure_zero_iff_ae_nmem {s : set α} : μ s = 0 ↔ ∀ᵐ a ∂ μ, a ∉ s :=
1061
- by simp only [ae_iff, not_not, set_of_mem_eq]
1066
+ compl_mem_ae_iff.symm
1062
1067
1063
1068
lemma ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 :=
1064
1069
by rw [← empty_in_sets_eq_bot, mem_ae_iff, compl_empty, measure.measure_univ_eq_zero]
@@ -1342,3 +1347,19 @@ meta def volume_tac : tactic unit := `[exact measure_theory.measure_space.volume
1342
1347
end measure_space
1343
1348
1344
1349
end measure_theory
1350
+
1351
+ namespace is_compact
1352
+
1353
+ open measure_theory
1354
+
1355
+ variables {α : Type *} [topological_space α] [measurable_space α] {μ : measure α} {s : set α}
1356
+
1357
+ lemma finite_measure_of_nhds_within (hs : is_compact s) :
1358
+ (∀ a ∈ s, ∃ t ∈ nhds_within a s, μ t < ⊤) → μ s < ⊤ :=
1359
+ by simpa only [← measure.compl_mem_cofinite] using hs.compl_mem_sets_of_nhds_within
1360
+
1361
+ lemma measure_zero_of_nhds_within (hs : is_compact s) :
1362
+ (∀ a ∈ s, ∃ t ∈ nhds_within a s, μ t = 0 ) → μ s = 0 :=
1363
+ by simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
1364
+
1365
+ end is_compact
0 commit comments