Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8ba59d8

Browse files
committed
feat(measure_theory/measure_space): 2 lemmas about compact sets (#3573)
A compact set `s` has finite (resp., zero) measure if every point of `s` has a neighborhood within `s` of finite (resp., zero) measure.
1 parent da64c7f commit 8ba59d8

File tree

1 file changed

+23
-2
lines changed

1 file changed

+23
-2
lines changed

src/measure_theory/measure_space.lean

Lines changed: 23 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1043,22 +1043,27 @@ def cofinite (μ : measure α) : filter α :=
10431043

10441044
lemma mem_cofinite {s : set α} : s ∈ μ.cofinite ↔ μ sᶜ < ⊤ := iff.rfl
10451045

1046+
lemma compl_mem_cofinite {s : set α} : sᶜ ∈ μ.cofinite ↔ μ s < ⊤ :=
1047+
by rw [mem_cofinite, compl_compl]
1048+
10461049
lemma eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ {x | ¬p x} < ⊤ := iff.rfl
10471050

10481051
end measure
10491052

10501053
variables {α : Type*} {β : Type*} [measurable_space α] {μ : measure α}
10511054

1052-
notation `∀ᵐ` binders `∂` μ `, ` r:(scoped P, filter.eventually P (measure.ae μ)) := r
1055+
notation `∀ᵐ` binders ` ∂` μ `, ` r:(scoped P, filter.eventually P (measure.ae μ)) := r
10531056
notation f ` =ᵐ[`:50 μ:50 `] `:0 g:50 := f =ᶠ[measure.ae μ] g
10541057
notation f ` ≤ᵐ[`:50 μ:50 `] `:0 g:50 := f ≤ᶠ[measure.ae μ] g
10551058

10561059
lemma mem_ae_iff {s : set α} : s ∈ μ.ae ↔ μ sᶜ = 0 := iff.rfl
10571060

10581061
lemma ae_iff {p : α → Prop} : (∀ᵐ a ∂ μ, p a) ↔ μ { a | ¬ p a } = 0 := iff.rfl
10591062

1063+
lemma compl_mem_ae_iff {s : set α} : sᶜ ∈ μ.ae ↔ μ s = 0 := by simp only [mem_ae_iff, compl_compl]
1064+
10601065
lemma measure_zero_iff_ae_nmem {s : set α} : μ s = 0 ↔ ∀ᵐ a ∂ μ, a ∉ s :=
1061-
by simp only [ae_iff, not_not, set_of_mem_eq]
1066+
compl_mem_ae_iff.symm
10621067

10631068
lemma ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 :=
10641069
by rw [← empty_in_sets_eq_bot, mem_ae_iff, compl_empty, measure.measure_univ_eq_zero]
@@ -1342,3 +1347,19 @@ meta def volume_tac : tactic unit := `[exact measure_theory.measure_space.volume
13421347
end measure_space
13431348

13441349
end measure_theory
1350+
1351+
namespace is_compact
1352+
1353+
open measure_theory
1354+
1355+
variables {α : Type*} [topological_space α] [measurable_space α] {μ : measure α} {s : set α}
1356+
1357+
lemma finite_measure_of_nhds_within (hs : is_compact s) :
1358+
(∀ a ∈ s, ∃ t ∈ nhds_within a s, μ t < ⊤) → μ s < ⊤ :=
1359+
by simpa only [← measure.compl_mem_cofinite] using hs.compl_mem_sets_of_nhds_within
1360+
1361+
lemma measure_zero_of_nhds_within (hs : is_compact s) :
1362+
(∀ a ∈ s, ∃ t ∈ nhds_within a s, μ t = 0) → μ s = 0 :=
1363+
by simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
1364+
1365+
end is_compact

0 commit comments

Comments
 (0)