Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8d5830e

Browse files
committed
chore(measure_theory/measurable_space): use implicit measurable_space argument (#11230)
The `measurable_space` argument is inferred from other arguments (like `measurable f` or a measure for example) instead of being a type class. This ensures that the lemmas are usable without `@` when several measurable space structures are used for the same type. Co-authored-by: Rémy Degenne <remydegenne@gmail.com>
1 parent 4912740 commit 8d5830e

File tree

4 files changed

+142
-100
lines changed

4 files changed

+142
-100
lines changed

src/measure_theory/function/conditional_expectation.lean

Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,7 @@ variables (F)
217217
def Lp_meas_subgroup (m : measurable_space α) [measurable_space α] (p : ℝ≥0∞) (μ : measure α) :
218218
add_subgroup (Lp F p μ) :=
219219
{ carrier := {f : (Lp F p μ) | ae_measurable' m f μ} ,
220-
zero_mem' := ⟨(0 : α → F), @measurable_zero _ α _ m _, Lp.coe_fn_zero _ _ _⟩,
220+
zero_mem' := ⟨(0 : α → F), @measurable_zero _ α m _ _, Lp.coe_fn_zero _ _ _⟩,
221221
add_mem' := λ f g hf hg, (hf.add hg).congr (Lp.coe_fn_add f g).symm,
222222
neg_mem' := λ f hf, ae_measurable'.congr hf.neg (Lp.coe_fn_neg f).symm, }
223223

@@ -228,7 +228,7 @@ def Lp_meas [opens_measurable_space 𝕜] (m : measurable_space α) [measurable_
228228
(μ : measure α) :
229229
submodule 𝕜 (Lp F p μ) :=
230230
{ carrier := {f : (Lp F p μ) | ae_measurable' m f μ} ,
231-
zero_mem' := ⟨(0 : α → F), @measurable_zero _ α _ m _, Lp.coe_fn_zero _ _ _⟩,
231+
zero_mem' := ⟨(0 : α → F), @measurable_zero _ α m _ _, Lp.coe_fn_zero _ _ _⟩,
232232
add_mem' := λ f g hf hg, (hf.add hg).congr (Lp.coe_fn_add f g).symm,
233233
smul_mem' := λ c f hf, (hf.const_smul c).congr (Lp.coe_fn_smul c f).symm, }
234234
variables {F 𝕜}
@@ -264,9 +264,7 @@ coe_fn_coe_base f
264264
lemma mem_Lp_meas_indicator_const_Lp {m m0 : measurable_space α} (hm : m ≤ m0)
265265
{μ : measure α} {s : set α} (hs : measurable_set[m] s) (hμs : μ s ≠ ∞) {c : F} :
266266
indicator_const_Lp p (hm s hs) hμs c ∈ Lp_meas F 𝕜 m p μ :=
267-
⟨s.indicator (λ x : α, c),
268-
@measurable.indicator α _ m _ _ s (λ x, c) (@measurable_const _ α _ m _) hs,
269-
indicator_const_Lp_coe_fn⟩
267+
⟨s.indicator (λ x : α, c), (@measurable_const _ α _ m _).indicator hs, indicator_const_Lp_coe_fn⟩
270268

271269
section complete_subspace
272270

@@ -1585,7 +1583,7 @@ begin
15851583
exact ae_measurable'_condexp_L1_clm _, },
15861584
{ rw condexp_L1_undef hf,
15871585
refine ae_measurable'.congr _ (coe_fn_zero _ _ _).symm,
1588-
exact measurable.ae_measurable' (@measurable_zero _ _ _ m _), },
1586+
exact measurable.ae_measurable' (@measurable_zero _ _ m _ _), },
15891587
end
15901588

15911589
lemma integrable_condexp_L1 (f : α → F') : integrable (condexp_L1 hm μ f) μ :=
@@ -1688,7 +1686,7 @@ begin
16881686
end
16891687

16901688
@[simp] lemma condexp_zero : μ[(0 : α → F')|m,hm] = 0 :=
1691-
condexp_of_measurable (@measurable_zero _ _ _ m _) (integrable_zero _ _ _)
1689+
condexp_of_measurable (@measurable_zero _ _ m _ _) (integrable_zero _ _ _)
16921690

16931691
lemma measurable_condexp : measurable[m] (μ[f|m,hm]) :=
16941692
begin

0 commit comments

Comments
 (0)