@@ -158,30 +158,27 @@ lemma countable_Union {t : ι → set α} [countable ι] (ht : ∀ i, (t i).coun
158
158
(⋃a, t a).countable :=
159
159
by { haveI := λ a, (ht a).to_subtype, rw Union_eq_range_psigma, apply countable_range }
160
160
161
- lemma countable.bUnion
162
- {s : set α} {t : Π x ∈ s, set β} (hs : s.countable) (ht : ∀a∈s, (t a ‹_›).countable) :
163
- (⋃a∈s, t a ‹_›).countable :=
164
- begin
165
- rw bUnion_eq_Union,
166
- haveI := hs.to_subtype,
167
- exact countable_Union (by simpa using ht)
168
- end
161
+ @[simp] lemma countable_Union_iff [countable ι] {t : ι → set α} :
162
+ (⋃ i, t i).countable ↔ ∀ i, (t i).countable :=
163
+ ⟨λ h i, h.mono $ subset_Union _ _, countable_Union⟩
169
164
170
- lemma countable.sUnion {s : set (set α)} (hs : s.countable) (h : ∀a∈ s, (a : _) .countable) :
171
- (⋃₀ s ).countable :=
172
- by rw sUnion_eq_bUnion; exact hs.bUnion h
165
+ lemma countable.bUnion_iff {s : set α} {t : Π a ∈ s, set β} (hs : s .countable) :
166
+ (⋃ a ∈ s, t a ‹_›).countable ↔ ∀ a ∈ s, (t a ‹_› ).countable :=
167
+ by { haveI := hs.to_subtype, rw [bUnion_eq_Union, countable_Union_iff, set_coe.forall'] }
173
168
174
- lemma countable_Union_Prop {p : Prop } {t : p → set β } (ht : ∀h:p, (t h) .countable) :
175
- (⋃h:p, t h ).countable :=
176
- by by_cases p; simp [h, ht ]
169
+ lemma countable.sUnion_iff {s : set ( set α) } (hs : s .countable) :
170
+ (⋃₀ s).countable ↔ ∀ a ∈ s, (a : _ ).countable :=
171
+ by rw [sUnion_eq_bUnion, hs.bUnion_iff ]
177
172
178
- lemma countable.union
179
- {s₁ s₂ : set α} (h₁ : s₁.countable) (h₂ : s₂.countable) : (s₁ ∪ s₂).countable :=
180
- by rw union_eq_Union; exact
181
- countable_Union (bool.forall_bool.2 ⟨h₂, h₁⟩)
173
+ alias countable.bUnion_iff ↔ _ countable.bUnion
174
+ alias countable.sUnion_iff ↔ _ countable.sUnion
182
175
183
176
@[simp] lemma countable_union {s t : set α} : (s ∪ t).countable ↔ s.countable ∧ t.countable :=
184
- ⟨λ h, ⟨h.mono (subset_union_left s t), h.mono (subset_union_right _ _)⟩, λ h, h.1 .union h.2 ⟩
177
+ by simp [union_eq_Union, and.comm]
178
+
179
+ lemma countable.union {s t : set α} (hs : s.countable) (ht : t.countable) :
180
+ (s ∪ t).countable :=
181
+ countable_union.2 ⟨hs, ht⟩
185
182
186
183
@[simp] lemma countable_insert {s : set α} {a : α} : (insert a s).countable ↔ s.countable :=
187
184
by simp only [insert_eq, countable_union, countable_singleton, true_and]
0 commit comments