@@ -3,7 +3,7 @@ Copyright (c) 2020 Patrick Massot. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Patrick Massot
5
5
-/
6
- import topology.instances.real
6
+ import topology.unit_interval
7
7
import topology.algebra.ordered.proj_Icc
8
8
9
9
/-!
@@ -58,47 +58,11 @@ on `(-∞, 0]` and to `y` on `[1, +∞)`.
58
58
-/
59
59
60
60
noncomputable theory
61
- open_locale classical topological_space filter
62
- open filter set function
61
+ open_locale classical topological_space filter unit_interval
62
+ open filter set function unit_interval
63
63
64
64
variables {X : Type *} [topological_space X] {x y z : X} {ι : Type *}
65
65
66
- /-! ### The unit interval -/
67
-
68
- local notation `I ` := Icc (0 : ℝ) 1
69
-
70
- lemma Icc_zero_one_symm {t : ℝ} : t ∈ I ↔ 1 - t ∈ I :=
71
- begin
72
- rw [mem_Icc, mem_Icc],
73
- split ; intro ; split ; linarith
74
- end
75
-
76
- instance I_has_zero : has_zero I := ⟨⟨0 , by split ; norm_num⟩⟩
77
-
78
- @[simp, norm_cast] lemma coe_I_zero : ((0 : I) : ℝ) = 0 := rfl
79
-
80
- instance I_has_one : has_one I := ⟨⟨1 , by split ; norm_num⟩⟩
81
-
82
- @[simp, norm_cast] lemma coe_I_one : ((1 : I) : ℝ) = 1 := rfl
83
-
84
- /-- Unit interval central symmetry. -/
85
- def I_symm : I → I := λ t, ⟨1 - t.val, Icc_zero_one_symm.mp t.property⟩
86
-
87
- local notation `σ ` := I_symm
88
-
89
- @[simp] lemma I_symm_zero : σ 0 = 1 :=
90
- subtype.ext $ by simp [I_symm]
91
-
92
- @[simp] lemma I_symm_one : σ 1 = 0 :=
93
- subtype.ext $ by simp [I_symm]
94
-
95
- @[continuity]
96
- lemma continuous_I_symm : continuous σ :=
97
- by continuity!
98
-
99
- instance : connected_space I :=
100
- subtype.connected_space ⟨nonempty_Icc.mpr zero_le_one, is_preconnected_Icc⟩
101
-
102
66
/-! ### Paths -/
103
67
104
68
/-- Continuous path connecting two points `x` and `y` in a topological space -/
@@ -162,9 +126,9 @@ by { ext, refl }
162
126
range γ.symm = range γ :=
163
127
begin
164
128
ext x,
165
- simp only [ mem_range, path.symm, has_coe_to_fun.coe, coe_fn, I_symm , set_coe.exists, comp_app ,
166
- subtype.coe_mk, subtype.val_eq_coe ],
167
- split; rintros ⟨y, hy, hxy⟩; refine ⟨1 -y, Icc_zero_one_symm .mp hy, _⟩; convert hxy,
129
+ simp only [mem_range, path.symm, has_coe_to_fun.coe, coe_fn, unit_interval.symm , set_coe.exists,
130
+ comp_app, subtype.coe_mk, subtype.val_eq_coe],
131
+ split; rintros ⟨y, hy, hxy⟩; refine ⟨1 -y, mem_iff_one_sub_mem .mp hy, _⟩; convert hxy,
168
132
simp
169
133
end
170
134
316
280
lemma symm_continuous_family {X ι : Type *} [topological_space X] [topological_space ι]
317
281
{a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) :
318
282
continuous ↿(λ t, (γ t).symm) :=
319
- h.comp (continuous_id.prod_map continuous_I_symm )
283
+ h.comp (continuous_id.prod_map continuous_symm )
320
284
321
285
lemma continuous_uncurry_extend_of_continuous_family {X ι : Type *} [topological_space X]
322
286
[topological_space ι] {a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) :
0 commit comments