Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8e9abe3

Browse files
committed
feat(measure_theory/constructions/borel_space): generalize a lemma (#12843)
Generalize `measurable_limit_of_tendsto_metric_ae` from `at_top : filter ℕ` to any countably generated filter on a nonempty type.
1 parent d902c22 commit 8e9abe3

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

src/measure_theory/constructions/borel_space.lean

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -1869,40 +1869,40 @@ end
18691869

18701870
lemma measurable_of_tendsto_metric_ae {μ : measure α} [μ.is_complete] {f : ℕ → α → β} {g : α → β}
18711871
(hf : ∀ n, measurable (f n))
1872-
(h_ae_tendsto : ∀ᵐ x ∂μ, filter.at_top.tendsto (λ n, f n x) (𝓝 (g x))) :
1872+
(h_ae_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) :
18731873
measurable g :=
18741874
ae_measurable_iff_measurable.mp
18751875
(ae_measurable_of_tendsto_metric_ae' (λ i, (hf i).ae_measurable) h_ae_tendsto)
18761876

1877-
lemma measurable_limit_of_tendsto_metric_ae {μ : measure α} {f : ℕ → α → β}
1878-
(hf : ∀ n, ae_measurable (f n) μ)
1879-
(h_ae_tendsto : ∀ᵐ x ∂μ, ∃ l : β, filter.at_top.tendsto (λ n, f n x) (𝓝 l)) :
1877+
lemma measurable_limit_of_tendsto_metric_ae {ι} [encodable ι] [nonempty ι] {μ : measure α}
1878+
{f : ι → α → β} {L : filter ι} [L.is_countably_generated] (hf : ∀ n, ae_measurable (f n) μ)
1879+
(h_ae_tendsto : ∀ᵐ x ∂μ, ∃ l : β, tendsto (λ n, f n x) L (𝓝 l)) :
18801880
∃ (f_lim : α → β) (hf_lim_meas : measurable f_lim),
1881-
∀ᵐ x ∂μ, filter.at_top.tendsto (λ n, f n x) (𝓝 (f_lim x)) :=
1881+
∀ᵐ x ∂μ, tendsto (λ n, f n x) L (𝓝 (f_lim x)) :=
18821882
begin
1883-
let p : α → (ℕ → β) → Prop := λ x f', ∃ l : β, filter.at_top.tendsto (λ n, f' n) (𝓝 l),
1884-
have hp_mem : ∀ x, x ∈ ae_seq_set hf p → p x (λ n, f n x),
1883+
inhabit ι,
1884+
unfreezingI { rcases eq_or_ne L ⊥ with rfl | hL },
1885+
{ exact ⟨(hf default).mk _, (hf default).measurable_mk,
1886+
eventually_of_forall $ λ x, tendsto_bot⟩ },
1887+
haveI : ne_bot L := ⟨hL⟩,
1888+
let p : α → (ι → β) → Prop := λ x f', ∃ l : β, tendsto (λ n, f' n) L (𝓝 l),
1889+
have hp_mem : ∀ x ∈ ae_seq_set hf p, p x (λ n, f n x),
18851890
from λ x hx, ae_seq.fun_prop_of_mem_ae_seq_set hf hx,
1886-
have hμ_compl : μ (ae_seq_set hf p)ᶜ = 0,
1887-
from ae_seq.measure_compl_ae_seq_set_eq_zero hf h_ae_tendsto,
1891+
have h_ae_eq : ∀ᵐ x ∂μ, ∀ n, ae_seq hf p n x = f n x,
1892+
from ae_seq.ae_seq_eq_fun_ae hf h_ae_tendsto,
18881893
let f_lim : α → β := λ x, dite (x ∈ ae_seq_set hf p) (λ h, (hp_mem x h).some)
1889-
(λ h, (⟨f 0 x⟩ : nonempty β).some),
1890-
have hf_lim_conv : ∀ x, x ∈ ae_seq_set hf p → filter.at_top.tendsto (λ n, f n x) (𝓝 (f_lim x)),
1891-
{ intros x hx_conv,
1892-
simp only [f_lim, hx_conv, dif_pos],
1893-
exact (hp_mem x hx_conv).some_spec, },
1894-
have hf_lim : ∀ x, filter.at_top.tendsto (λ n, ae_seq hf p n x) (𝓝 (f_lim x)),
1894+
(λ h, (⟨f default x⟩ : nonempty β).some),
1895+
have hf_lim : ∀ x, tendsto (λ n, ae_seq hf p n x) L (𝓝 (f_lim x)),
18951896
{ intros x,
18961897
simp only [f_lim, ae_seq],
18971898
split_ifs,
1898-
{ rw funext (λ n, ae_seq.mk_eq_fun_of_mem_ae_seq_set hf h n),
1899-
exact (hp_mem x h).some_spec, },
1899+
{ refine (hp_mem x h).some_spec.congr (λ n, _),
1900+
exact (ae_seq.mk_eq_fun_of_mem_ae_seq_set hf h n).symm },
19001901
{ exact tendsto_const_nhds, }, },
1901-
have h_ae_tendsto_f_lim : ∀ᵐ x ∂μ, filter.at_top.tendsto (λ n, f n x) (𝓝 (f_lim x)),
1902-
{ refine le_antisymm (le_of_eq (measure_mono_null _ hμ_compl)) (zero_le _),
1903-
exact set.compl_subset_compl.mpr (λ x hx, hf_lim_conv x hx), },
1902+
have h_ae_tendsto_f_lim : ∀ᵐ x ∂μ, tendsto (λ n, f n x) L (𝓝 (f_lim x)),
1903+
from h_ae_eq.mono (λ x hx, (hf_lim x).congr hx),
19041904
have h_f_lim_meas : measurable f_lim,
1905-
from measurable_of_tendsto_metric (ae_seq.measurable hf p)
1905+
from measurable_of_tendsto_metric' L (ae_seq.measurable hf p)
19061906
(tendsto_pi_nhds.mpr (λ x, hf_lim x)),
19071907
exact ⟨f_lim, h_f_lim_meas, h_ae_tendsto_f_lim⟩,
19081908
end

0 commit comments

Comments
 (0)