Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 8f16001

Browse files
committed
chore(*): rename erase_dup to dedup (#12057)
1 parent 35ef770 commit 8f16001

35 files changed

+324
-324
lines changed

src/algebra/big_operators/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1565,7 +1565,7 @@ lemma to_finset_prod_dvd_prod [comm_monoid α] (S : multiset α) : S.to_finset.p
15651565
begin
15661566
rw finset.prod_eq_multiset_prod,
15671567
refine multiset.prod_dvd_prod_of_le _,
1568-
simp [multiset.erase_dup_le S],
1568+
simp [multiset.dedup_le S],
15691569
end
15701570

15711571
@[to_additive]

src/algebra/gcd_monoid/multiset.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ end
6767

6868
variables [decidable_eq α]
6969

70-
@[simp] lemma lcm_erase_dup (s : multiset α) : (erase_dup s).lcm = s.lcm :=
70+
@[simp] lemma lcm_dedup (s : multiset α) : (dedup s).lcm = s.lcm :=
7171
multiset.induction_on s (by simp) $ λ a s IH, begin
7272
by_cases a ∈ s; simp [IH, h],
7373
unfold lcm,
@@ -77,15 +77,15 @@ end
7777

7878
@[simp] lemma lcm_ndunion (s₁ s₂ : multiset α) :
7979
(ndunion s₁ s₂).lcm = gcd_monoid.lcm s₁.lcm s₂.lcm :=
80-
by { rw [← lcm_erase_dup, erase_dup_ext.2, lcm_erase_dup, lcm_add], simp }
80+
by { rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_add], simp }
8181

8282
@[simp] lemma lcm_union (s₁ s₂ : multiset α) :
8383
(s₁ ∪ s₂).lcm = gcd_monoid.lcm s₁.lcm s₂.lcm :=
84-
by { rw [← lcm_erase_dup, erase_dup_ext.2, lcm_erase_dup, lcm_add], simp }
84+
by { rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_add], simp }
8585

8686
@[simp] lemma lcm_ndinsert (a : α) (s : multiset α) :
8787
(ndinsert a s).lcm = gcd_monoid.lcm a s.lcm :=
88-
by { rw [← lcm_erase_dup, erase_dup_ext.2, lcm_erase_dup, lcm_cons], simp }
88+
by { rw [← lcm_dedup, dedup_ext.2, lcm_dedup, lcm_cons], simp }
8989

9090
end lcm
9191

@@ -136,7 +136,7 @@ end
136136

137137
variables [decidable_eq α]
138138

139-
@[simp] lemma gcd_erase_dup (s : multiset α) : (erase_dup s).gcd = s.gcd :=
139+
@[simp] lemma gcd_dedup (s : multiset α) : (dedup s).gcd = s.gcd :=
140140
multiset.induction_on s (by simp) $ λ a s IH, begin
141141
by_cases a ∈ s; simp [IH, h],
142142
unfold gcd,
@@ -146,15 +146,15 @@ end
146146

147147
@[simp] lemma gcd_ndunion (s₁ s₂ : multiset α) :
148148
(ndunion s₁ s₂).gcd = gcd_monoid.gcd s₁.gcd s₂.gcd :=
149-
by { rw [← gcd_erase_dup, erase_dup_ext.2, gcd_erase_dup, gcd_add], simp }
149+
by { rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_add], simp }
150150

151151
@[simp] lemma gcd_union (s₁ s₂ : multiset α) :
152152
(s₁ ∪ s₂).gcd = gcd_monoid.gcd s₁.gcd s₂.gcd :=
153-
by { rw [← gcd_erase_dup, erase_dup_ext.2, gcd_erase_dup, gcd_add], simp }
153+
by { rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_add], simp }
154154

155155
@[simp] lemma gcd_ndinsert (a : α) (s : multiset α) :
156156
(ndinsert a s).gcd = gcd_monoid.gcd a s.gcd :=
157-
by { rw [← gcd_erase_dup, erase_dup_ext.2, gcd_erase_dup, gcd_cons], simp }
157+
by { rw [← gcd_dedup, dedup_ext.2, gcd_dedup, gcd_cons], simp }
158158

159159
end gcd
160160

src/algebra/squarefree.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -332,7 +332,7 @@ begin
332332
rcases an with ⟨b, rfl⟩,
333333
rw mul_ne_zero_iff at h0,
334334
rw unique_factorization_monoid.squarefree_iff_nodup_normalized_factors h0.1 at hsq,
335-
rw [multiset.to_finset_subset, multiset.to_finset_val, hsq.erase_dup, ← associated_iff_eq,
335+
rw [multiset.to_finset_subset, multiset.to_finset_val, hsq.dedup, ← associated_iff_eq,
336336
normalized_factors_mul h0.1 h0.2],
337337
exact ⟨multiset.subset_of_le (multiset.le_add_right _ _), normalized_factors_prod h0.1⟩ },
338338
{ rintro ⟨s, hs, rfl⟩,
@@ -342,12 +342,12 @@ begin
342342
simp only [exists_prop, id.def, exists_eq_right],
343343
intro con,
344344
apply not_irreducible_zero (irreducible_of_normalized_factor 0
345-
(multiset.mem_erase_dup.1 (multiset.mem_of_le hs con))) },
345+
(multiset.mem_dedup.1 (multiset.mem_of_le hs con))) },
346346
rw (normalized_factors_prod h0).symm.dvd_iff_dvd_right,
347-
refine ⟨⟨multiset.prod_dvd_prod_of_le (le_trans hs (multiset.erase_dup_le _)), h0⟩, _⟩,
347+
refine ⟨⟨multiset.prod_dvd_prod_of_le (le_trans hs (multiset.dedup_le _)), h0⟩, _⟩,
348348
have h := unique_factorization_monoid.factors_unique irreducible_of_normalized_factor
349349
(λ x hx, irreducible_of_normalized_factor x (multiset.mem_of_le
350-
(le_trans hs (multiset.erase_dup_le _)) hx)) (normalized_factors_prod hs0),
350+
(le_trans hs (multiset.dedup_le _)) hx)) (normalized_factors_prod hs0),
351351
rw [associated_eq_eq, multiset.rel_eq] at h,
352352
rw [unique_factorization_monoid.squarefree_iff_nodup_normalized_factors hs0, h],
353353
apply s.nodup } },

src/data/fin_enum.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,11 +43,11 @@ def of_nodup_list [decidable_eq α] (xs : list α) (h : ∀ x : α, x ∈ xs) (h
4343
λ ⟨i,h⟩, xs.nth_le _ h,
4444
λ x, by simp [of_nodup_list._match_1],
4545
λ ⟨i,h⟩, by simp [of_nodup_list._match_1,*]; rw list.nth_le_index_of;
46-
apply list.nodup_erase_dup ⟩ }
46+
apply list.nodup_dedup ⟩ }
4747

4848
/-- create a `fin_enum` instance from an exhaustive list; duplicates are removed -/
4949
def of_list [decidable_eq α] (xs : list α) (h : ∀ x : α, x ∈ xs) : fin_enum α :=
50-
of_nodup_list xs.erase_dup (by simp *) (list.nodup_erase_dup _)
50+
of_nodup_list xs.dedup (by simp *) (list.nodup_dedup _)
5151

5252
/-- create an exhaustive list of the values of a given type -/
5353
def to_list (α) [fin_enum α] : list α :=

src/data/finset/basic.lean

Lines changed: 27 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -149,8 +149,8 @@ theorem eq_of_veq : ∀ {s t : finset α}, s.1 = t.1 → s = t
149149
@[simp] theorem val_inj {s t : finset α} : s.1 = t.1 ↔ s = t :=
150150
⟨eq_of_veq, congr_arg _⟩
151151

152-
@[simp] theorem erase_dup_eq_self [decidable_eq α] (s : finset α) : erase_dup s.1 = s.1 :=
153-
s.2.erase_dup
152+
@[simp] theorem dedup_eq_self [decidable_eq α] (s : finset α) : dedup s.1 = s.1 :=
153+
s.2.dedup
154154

155155
instance has_decidable_eq [decidable_eq α] : decidable_eq (finset α)
156156
| s₁ s₂ := decidable_of_iff _ val_inj
@@ -550,8 +550,8 @@ theorem insert_def (a : α) (s : finset α) : insert a s = ⟨_, nodup_ndinsert
550550

551551
@[simp] theorem insert_val (a : α) (s : finset α) : (insert a s).1 = ndinsert a s.1 := rfl
552552

553-
theorem insert_val' (a : α) (s : finset α) : (insert a s).1 = erase_dup (a ::ₘ s.1) :=
554-
by rw [erase_dup_cons, erase_dup_eq_self]; refl
553+
theorem insert_val' (a : α) (s : finset α) : (insert a s).1 = dedup (a ::ₘ s.1) :=
554+
by rw [dedup_cons, dedup_eq_self]; refl
555555

556556
theorem insert_val_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : (insert a s).1 = a ::ₘ s.1 :=
557557
by rw [insert_val, ndinsert_of_not_mem h]
@@ -1658,30 +1658,30 @@ def not_mem_range_equiv (k : ℕ) : {n // n ∉ range k} ≃ ℕ :=
16581658
@[simp] lemma coe_not_mem_range_equiv_symm (k : ℕ) :
16591659
((not_mem_range_equiv k).symm : ℕ → {n // n ∉ range k}) = λ j, ⟨j + k, by simp⟩ := rfl
16601660

1661-
/-! ### erase_dup on list and multiset -/
1661+
/-! ### dedup on list and multiset -/
16621662

16631663
namespace multiset
16641664
variable [decidable_eq α]
16651665

16661666
/-- `to_finset s` removes duplicates from the multiset `s` to produce a finset. -/
1667-
def to_finset (s : multiset α) : finset α := ⟨_, nodup_erase_dup s⟩
1667+
def to_finset (s : multiset α) : finset α := ⟨_, nodup_dedup s⟩
16681668

1669-
@[simp] theorem to_finset_val (s : multiset α) : s.to_finset.1 = s.erase_dup := rfl
1669+
@[simp] theorem to_finset_val (s : multiset α) : s.to_finset.1 = s.dedup := rfl
16701670

16711671
theorem to_finset_eq {s : multiset α} (n : nodup s) : finset.mk s n = s.to_finset :=
1672-
finset.val_inj.1 n.erase_dup.symm
1672+
finset.val_inj.1 n.dedup.symm
16731673

16741674
lemma nodup.to_finset_inj {l l' : multiset α} (hl : nodup l) (hl' : nodup l')
16751675
(h : l.to_finset = l'.to_finset) : l = l' :=
16761676
by simpa [←to_finset_eq hl, ←to_finset_eq hl'] using h
16771677

1678-
@[simp] lemma mem_to_finset {a : α} {s : multiset α} : a ∈ s.to_finset ↔ a ∈ s := mem_erase_dup
1678+
@[simp] lemma mem_to_finset {a : α} {s : multiset α} : a ∈ s.to_finset ↔ a ∈ s := mem_dedup
16791679

16801680
@[simp] lemma to_finset_zero : to_finset (0 : multiset α) = ∅ := rfl
16811681

16821682
@[simp] lemma to_finset_cons (a : α) (s : multiset α) :
16831683
to_finset (a ::ₘ s) = insert a (to_finset s) :=
1684-
finset.eq_of_veq erase_dup_cons
1684+
finset.eq_of_veq dedup_cons
16851685

16861686
@[simp] lemma to_finset_singleton (a : α) : to_finset ({a} : multiset α) = {a} :=
16871687
by rw [singleton_eq_cons, to_finset_cons, to_finset_zero, is_lawful_singleton.insert_emptyc_eq]
@@ -1706,7 +1706,7 @@ finset.ext $ by simp
17061706
by ext; simp
17071707

17081708
theorem to_finset_eq_empty {m : multiset α} : m.to_finset = ∅ ↔ m = 0 :=
1709-
finset.val_inj.symm.trans multiset.erase_dup_eq_zero
1709+
finset.val_inj.symm.trans multiset.dedup_eq_zero
17101710

17111711
@[simp] lemma to_finset_subset (s t : multiset α) : s.to_finset ⊆ t.to_finset ↔ s ⊆ t :=
17121712
by simp only [finset.subset_iff, multiset.subset_iff, multiset.mem_to_finset]
@@ -1729,32 +1729,32 @@ variables [decidable_eq α] {l l' : list α} {a : α}
17291729
/-- `to_finset l` removes duplicates from the list `l` to produce a finset. -/
17301730
def to_finset (l : list α) : finset α := multiset.to_finset l
17311731

1732-
@[simp] theorem to_finset_val (l : list α) : l.to_finset.1 = (l.erase_dup : multiset α) := rfl
1732+
@[simp] theorem to_finset_val (l : list α) : l.to_finset.1 = (l.dedup : multiset α) := rfl
17331733

17341734
lemma to_finset_eq (n : nodup l) : @finset.mk α l n = l.to_finset := multiset.to_finset_eq n
17351735

1736-
@[simp] lemma mem_to_finset : a ∈ l.to_finset ↔ a ∈ l := mem_erase_dup
1736+
@[simp] lemma mem_to_finset : a ∈ l.to_finset ↔ a ∈ l := mem_dedup
17371737
@[simp] lemma to_finset_nil : to_finset (@nil α) = ∅ := rfl
17381738

17391739
@[simp] lemma to_finset_cons : to_finset (a :: l) = insert a (to_finset l) :=
1740-
finset.eq_of_veq $ by by_cases h : a ∈ l; simp [finset.insert_val', multiset.erase_dup_cons, h]
1740+
finset.eq_of_veq $ by by_cases h : a ∈ l; simp [finset.insert_val', multiset.dedup_cons, h]
17411741

17421742
lemma to_finset_surj_on : set.surj_on to_finset {l : list α | l.nodup} set.univ :=
17431743
by { rintro ⟨⟨l⟩, hl⟩ _, exact ⟨l, hl, (to_finset_eq hl).symm⟩ }
17441744

17451745
theorem to_finset_surjective : surjective (to_finset : list α → finset α) :=
17461746
λ s, let ⟨l, _, hls⟩ := to_finset_surj_on (set.mem_univ s) in ⟨l, hls⟩
17471747

1748-
lemma to_finset_eq_iff_perm_erase_dup : l.to_finset = l'.to_finset ↔ l.erase_dup ~ l'.erase_dup :=
1749-
by simp [finset.ext_iff, perm_ext (nodup_erase_dup _) (nodup_erase_dup _)]
1748+
lemma to_finset_eq_iff_perm_dedup : l.to_finset = l'.to_finset ↔ l.dedup ~ l'.dedup :=
1749+
by simp [finset.ext_iff, perm_ext (nodup_dedup _) (nodup_dedup _)]
17501750

17511751
lemma to_finset.ext_iff {a b : list α} : a.to_finset = b.to_finset ↔ ∀ x, x ∈ a ↔ x ∈ b :=
17521752
by simp only [finset.ext_iff, mem_to_finset]
17531753

17541754
lemma to_finset.ext : (∀ x, x ∈ l ↔ x ∈ l') → l.to_finset = l'.to_finset := to_finset.ext_iff.mpr
17551755

17561756
lemma to_finset_eq_of_perm (l l' : list α) (h : l ~ l') : l.to_finset = l'.to_finset :=
1757-
to_finset_eq_iff_perm_erase_dup.mpr h.erase_dup
1757+
to_finset_eq_iff_perm_dedup.mpr h.dedup
17581758

17591759
lemma perm_of_nodup_nodup_to_finset_eq (hl : nodup l) (hl' : nodup l')
17601760
(h : l.to_finset = l'.to_finset) : l ~ l' :=
@@ -1907,14 +1907,14 @@ variables [decidable_eq β]
19071907
/-- `image f s` is the forward image of `s` under `f`. -/
19081908
def image (f : α → β) (s : finset α) : finset β := (s.1.map f).to_finset
19091909

1910-
@[simp] theorem image_val (f : α → β) (s : finset α) : (image f s).1 = (s.1.map f).erase_dup := rfl
1910+
@[simp] theorem image_val (f : α → β) (s : finset α) : (image f s).1 = (s.1.map f).dedup := rfl
19111911

19121912
@[simp] theorem image_empty (f : α → β) : (∅ : finset α).image f = ∅ := rfl
19131913

19141914
variables {f g : α → β} {s : finset α} {t : finset β} {a : α} {b c : β}
19151915

19161916
@[simp] lemma mem_image : b ∈ s.image f ↔ ∃ a ∈ s, f a = b :=
1917-
by simp only [mem_def, image_val, mem_erase_dup, multiset.mem_map, exists_prop]
1917+
by simp only [mem_def, image_val, mem_dedup, multiset.mem_map, exists_prop]
19181918

19191919
lemma mem_image_of_mem (f : α → β) {a} (h : a ∈ s) : f a ∈ s.image f := mem_image.2 ⟨_, h, rfl⟩
19201920

@@ -1969,18 +1969,18 @@ theorem image_to_finset [decidable_eq α] {s : multiset α} :
19691969
ext $ λ _, by simp only [mem_image, multiset.mem_to_finset, exists_prop, multiset.mem_map]
19701970

19711971
theorem image_val_of_inj_on (H : set.inj_on f s) : (image f s).1 = s.1.map f :=
1972-
(nodup_map_on H s.2).erase_dup
1972+
(nodup_map_on H s.2).dedup
19731973

19741974
@[simp] lemma image_id [decidable_eq α] : s.image id = s :=
19751975
ext $ λ _, by simp only [mem_image, exists_prop, id, exists_eq_right]
19761976

19771977
@[simp] theorem image_id' [decidable_eq α] : s.image (λ x, x) = s := image_id
19781978

19791979
theorem image_image [decidable_eq γ] {g : β → γ} : (s.image f).image g = s.image (g ∘ f) :=
1980-
eq_of_veq $ by simp only [image_val, erase_dup_map_erase_dup_eq, multiset.map_map]
1980+
eq_of_veq $ by simp only [image_val, dedup_map_dedup_eq, multiset.map_map]
19811981

19821982
theorem image_subset_image {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁.image f ⊆ s₂.image f :=
1983-
by simp only [subset_def, image_val, subset_erase_dup', erase_dup_subset',
1983+
by simp only [subset_def, image_val, subset_dedup', dedup_subset',
19841984
multiset.map_subset_map h]
19851985

19861986
lemma image_subset_iff : s.image f ⊆ t ↔ ∀ x ∈ s, f x ∈ t :=
@@ -2064,7 +2064,7 @@ lemma range_add (a b : ℕ) : range (a + b) = range a ∪ (range b).map (add_lef
20642064
by { rw [←val_inj, union_val], exact multiset.range_add_eq_union a b }
20652065

20662066
@[simp] lemma attach_image_val [decidable_eq α] {s : finset α} : s.attach.image subtype.val = s :=
2067-
eq_of_veq $ by rw [image_val, attach_val, multiset.attach_map_val, erase_dup_eq_self]
2067+
eq_of_veq $ by rw [image_val, attach_val, multiset.attach_map_val, dedup_eq_self]
20682068

20692069
@[simp] lemma attach_image_coe [decidable_eq α] {s : finset α} : s.attach.image coe = s :=
20702070
finset.attach_image_val
@@ -2078,7 +2078,7 @@ ext $ λ ⟨x, hx⟩, ⟨or.cases_on (mem_insert.1 hx)
20782078
λ _, finset.mem_attach _ _⟩
20792079

20802080
theorem map_eq_image (f : α ↪ β) (s : finset α) : s.map f = s.image f :=
2081-
eq_of_veq (s.map f).2.erase_dup.symm
2081+
eq_of_veq (s.map f).2.dedup.symm
20822082

20832083
lemma image_const {s : finset α} (h : s.nonempty) (b : β) : s.image (λa, b) = singleton b :=
20842084
ext $ assume b', by simp only [mem_image, exists_prop, exists_and_distrib_right,
@@ -2173,7 +2173,7 @@ end image
21732173

21742174
lemma _root_.multiset.to_finset_map [decidable_eq α] [decidable_eq β] (f : α → β) (m : multiset α) :
21752175
(m.map f).to_finset = m.to_finset.image f :=
2176-
finset.val_inj.1 (multiset.erase_dup_map_erase_dup_eq _ _).symm
2176+
finset.val_inj.1 (multiset.dedup_map_dedup_eq _ _).symm
21772177

21782178
section to_list
21792179

@@ -2224,12 +2224,12 @@ protected def bUnion (s : finset α) (t : α → finset β) : finset β :=
22242224
(s.1.bind (λ a, (t a).1)).to_finset
22252225

22262226
@[simp] theorem bUnion_val (s : finset α) (t : α → finset β) :
2227-
(s.bUnion t).1 = (s.1.bind (λ a, (t a).1)).erase_dup := rfl
2227+
(s.bUnion t).1 = (s.1.bind (λ a, (t a).1)).dedup := rfl
22282228

22292229
@[simp] theorem bUnion_empty : finset.bUnion ∅ t = ∅ := rfl
22302230

22312231
@[simp] lemma mem_bUnion {b : β} : b ∈ s.bUnion t ↔ ∃ a ∈ s, b ∈ t a :=
2232-
by simp only [mem_def, bUnion_val, mem_erase_dup, mem_bind, exists_prop]
2232+
by simp only [mem_def, bUnion_val, mem_dedup, mem_bind, exists_prop]
22332233

22342234
@[simp] lemma coe_bUnion : (s.bUnion t : set β) = ⋃ x ∈ (s : set α), t x :=
22352235
by simp only [set.ext_iff, mem_bUnion, set.mem_Union, iff_self, mem_coe, implies_true_iff]

src/data/finset/card.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -118,14 +118,14 @@ end finset
118118
section to_list_multiset
119119
variables [decidable_eq α] (m : multiset α) (l : list α)
120120

121-
lemma multiset.card_to_finset : m.to_finset.card = m.erase_dup.card := rfl
121+
lemma multiset.card_to_finset : m.to_finset.card = m.dedup.card := rfl
122122

123-
lemma multiset.to_finset_card_le : m.to_finset.card ≤ m.card := card_le_of_le $ erase_dup_le _
123+
lemma multiset.to_finset_card_le : m.to_finset.card ≤ m.card := card_le_of_le $ dedup_le _
124124

125125
lemma multiset.to_finset_card_of_nodup {m : multiset α} (h : m.nodup) : m.to_finset.card = m.card :=
126-
congr_arg card $ multiset.erase_dup_eq_self.mpr h
126+
congr_arg card $ multiset.dedup_eq_self.mpr h
127127

128-
lemma list.card_to_finset : l.to_finset.card = l.erase_dup.length := rfl
128+
lemma list.card_to_finset : l.to_finset.card = l.dedup.length := rfl
129129

130130
lemma list.to_finset_card_le : l.to_finset.card ≤ l.length := multiset.to_finset_card_le ⟦l⟧
131131

@@ -148,12 +148,12 @@ by simp only [card, image_val_of_inj_on H, card_map]
148148

149149
lemma inj_on_of_card_image_eq [decidable_eq β] (H : (s.image f).card = s.card) : set.inj_on f s :=
150150
begin
151-
change (s.1.map f).erase_dup.card = s.1.card at H,
152-
have : (s.1.map f).erase_dup = s.1.map f,
153-
{ refine multiset.eq_of_le_of_card_le (multiset.erase_dup_le _) _,
151+
change (s.1.map f).dedup.card = s.1.card at H,
152+
have : (s.1.map f).dedup = s.1.map f,
153+
{ refine multiset.eq_of_le_of_card_le (multiset.dedup_le _) _,
154154
rw H,
155155
simp only [multiset.card_map] },
156-
rw multiset.erase_dup_eq_self at this,
156+
rw multiset.dedup_eq_self at this,
157157
exact inj_on_of_nodup_map this,
158158
end
159159

src/data/finset/noncomm_prod.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -188,7 +188,7 @@ def noncomm_prod (s : finset α) (f : α → β) (comm : ∀ (x ∈ s) (y ∈ s)
188188
(hl : l.nodup) :
189189
noncomm_prod l.to_finset f comm = (l.map f).prod :=
190190
begin
191-
rw ←list.erase_dup_eq_self at hl,
191+
rw ←list.dedup_eq_self at hl,
192192
simp [noncomm_prod, hl]
193193
end
194194

src/data/finset/pi.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -73,14 +73,14 @@ assume e₁ e₂ eq,
7373
pi (insert a s) t = (t a).bUnion (λb, (pi s t).image (pi.cons s a b)) :=
7474
begin
7575
apply eq_of_veq,
76-
rw ← (pi (insert a s) t).2.erase_dup,
77-
refine (λ s' (h : s' = a ::ₘ s.1), (_ : erase_dup (multiset.pi s' (λ a, (t a).1)) =
78-
erase_dup ((t a).1.bind $ λ b,
79-
erase_dup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $
76+
rw ← (pi (insert a s) t).2.dedup,
77+
refine (λ s' (h : s' = a ::ₘ s.1), (_ : dedup (multiset.pi s' (λ a, (t a).1)) =
78+
dedup ((t a).1.bind $ λ b,
79+
dedup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $
8080
λ f a' h', multiset.pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha),
8181
subst s', rw pi_cons,
8282
congr, funext b,
83-
rw multiset.nodup.erase_dup,
83+
rw multiset.nodup.dedup,
8484
exact multiset.nodup_map (multiset.pi_cons_injective ha) (pi s t).2,
8585
end
8686

src/data/list/alist.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ structure alist (β : α → Type v) : Type (max u v) :=
4747
entries with duplicate keys. -/
4848
def list.to_alist [decidable_eq α] {β : α → Type v} (l : list (sigma β)) : alist β :=
4949
{ entries := _,
50-
nodupkeys := nodupkeys_erase_dupkeys l }
50+
nodupkeys := nodupkeys_dedupkeys l }
5151

5252
namespace alist
5353

@@ -221,7 +221,7 @@ by simp only [lookup, insert, lookup_kinsert]
221221
lookup_kinsert_ne h
222222

223223
@[simp] theorem lookup_to_alist {a} (s : list (sigma β)) : lookup a s.to_alist = s.lookup a :=
224-
by rw [list.to_alist,lookup,lookup_erase_dupkeys]
224+
by rw [list.to_alist,lookup,lookup_dedupkeys]
225225

226226
@[simp] theorem insert_insert {a} {b b' : β a} (s : alist β) :
227227
(s.insert a b).insert a b' = s.insert a b' :=
@@ -239,7 +239,7 @@ ext $ by simp only [alist.insert_entries, list.kerase_cons_eq, and_self, alist.s
239239
heq_iff_eq, eq_self_iff_true]
240240

241241
@[simp] theorem entries_to_alist (xs : list (sigma β)) :
242-
(list.to_alist xs).entries = erase_dupkeys xs := rfl
242+
(list.to_alist xs).entries = dedupkeys xs := rfl
243243

244244
theorem to_alist_cons (a : α) (b : β a) (xs : list (sigma β)) :
245245
list.to_alist (⟨a,b⟩ :: xs) = insert a b xs.to_alist := rfl

0 commit comments

Comments
 (0)