@@ -174,7 +174,7 @@ lemma lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top {f : α → F} (hp_ne_zero :
174
174
∫⁻ a, ∥f a∥₊ ^ p.to_real ∂μ < ∞ :=
175
175
begin
176
176
apply lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top,
177
- { exact ennreal.to_real_pos_iff.mpr ⟨bot_lt_iff_ne_bot.mpr hp_ne_zero, hp_ne_top⟩ },
177
+ { exact ennreal.to_real_pos hp_ne_zero hp_ne_top },
178
178
{ simpa [snorm_eq_snorm' hp_ne_zero hp_ne_top] using hfp }
179
179
end
180
180
@@ -184,7 +184,7 @@ lemma snorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {f : α → F} (hp_ne_zero :
184
184
⟨lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top hp_ne_zero hp_ne_top,
185
185
begin
186
186
intros h,
187
- have hp' := ennreal.to_real_pos_iff.mpr ⟨bot_lt_iff_ne_bot.mpr hp_ne_zero, hp_ne_top⟩ ,
187
+ have hp' := ennreal.to_real_pos hp_ne_zero hp_ne_top,
188
188
have : 0 < 1 / p.to_real := div_pos zero_lt_one hp',
189
189
simpa [snorm_eq_lintegral_rpow_nnnorm hp_ne_zero hp_ne_top] using
190
190
ennreal.rpow_lt_top_of_nonneg (le_of_lt this ) (ne_of_lt h)
@@ -226,8 +226,7 @@ begin
226
226
by_cases h_top : p = ∞,
227
227
{ simp only [h_top, snorm_exponent_top, snorm_ess_sup_zero], },
228
228
rw ←ne.def at h0,
229
- simp [snorm_eq_snorm' h0 h_top,
230
- ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩],
229
+ simp [snorm_eq_snorm' h0 h_top, ennreal.to_real_pos h0 h_top],
231
230
end
232
231
233
232
@[simp] lemma snorm_zero' : snorm (λ x : α, (0 : F)) p μ = 0 :=
@@ -261,8 +260,7 @@ begin
261
260
by_cases h_top : p = ∞,
262
261
{ simp [h_top], },
263
262
rw ←ne.def at h0,
264
- simp [snorm_eq_snorm' h0 h_top, snorm',
265
- ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩],
263
+ simp [snorm_eq_snorm' h0 h_top, snorm', ennreal.to_real_pos h0 h_top],
266
264
end
267
265
268
266
end zero
@@ -307,21 +305,19 @@ lemma snorm_const (c : F) (h0 : p ≠ 0) (hμ : μ ≠ 0) :
307
305
begin
308
306
by_cases h_top : p = ∞,
309
307
{ simp [h_top, snorm_ess_sup_const c hμ], },
310
- simp [snorm_eq_snorm' h0 h_top, snorm'_const,
311
- ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩],
308
+ simp [snorm_eq_snorm' h0 h_top, snorm'_const, ennreal.to_real_pos h0 h_top],
312
309
end
313
310
314
311
lemma snorm_const' (c : F) (h0 : p ≠ 0 ) (h_top: p ≠ ∞) :
315
312
snorm (λ x : α , c) p μ = (∥c∥₊ : ℝ≥0 ∞) * (μ set.univ) ^ (1 /(ennreal.to_real p)) :=
316
313
begin
317
- simp [snorm_eq_snorm' h0 h_top, snorm'_const,
318
- ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩],
314
+ simp [snorm_eq_snorm' h0 h_top, snorm'_const, ennreal.to_real_pos h0 h_top],
319
315
end
320
316
321
317
lemma snorm_const_lt_top_iff {p : ℝ≥0 ∞} {c : F} (hp_ne_zero : p ≠ 0 ) (hp_ne_top : p ≠ ∞) :
322
318
snorm (λ x : α, c) p μ < ∞ ↔ c = 0 ∨ μ set.univ < ∞ :=
323
319
begin
324
- have hp : 0 < p.to_real, from ennreal.to_real_pos_iff.mpr ⟨ hp_ne_zero.bot_lt, hp_ne_top⟩ ,
320
+ have hp : 0 < p.to_real, from ennreal.to_real_pos hp_ne_zero hp_ne_top,
325
321
by_cases hμ : μ = 0 ,
326
322
{ simp only [hμ, measure.coe_zero, pi.zero_apply, or_true, with_top.zero_lt_top,
327
323
snorm_measure_zero], },
@@ -666,8 +662,7 @@ begin
666
662
by_cases h_top : p = ∞,
667
663
{ rw [h_top, snorm_exponent_top, snorm_ess_sup_eq_zero_iff], },
668
664
rw snorm_eq_snorm' h0 h_top,
669
- exact snorm'_eq_zero_iff
670
- (ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩) hf,
665
+ exact snorm'_eq_zero_iff (ennreal.to_real_pos h0 h_top) hf,
671
666
end
672
667
673
668
lemma snorm'_add_le {f g : α → E} (hf : ae_measurable f μ) (hg : ae_measurable g μ) (hq1 : 1 ≤ q) :
@@ -904,12 +899,12 @@ begin
904
899
snorm_exponent_top],
905
900
exact le_rfl, },
906
901
rw snorm_eq_snorm' hp0 hp_top,
907
- have hp_pos : 0 < p.to_real, from ennreal.to_real_pos_iff.mpr ⟨ hp0_lt, hp_top⟩ ,
902
+ have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0_lt.ne' hp_top,
908
903
refine (snorm'_le_snorm_ess_sup_mul_rpow_measure_univ hp_pos).trans (le_of_eq _),
909
904
congr,
910
905
exact one_div _, },
911
906
have hp_lt_top : p < ∞, from hpq.trans_lt (lt_top_iff_ne_top.mpr hq_top),
912
- have hp_pos : 0 < p.to_real, from ennreal.to_real_pos_iff.mpr ⟨ hp0_lt, hp_lt_top.ne⟩ ,
907
+ have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0_lt.ne' hp_lt_top.ne,
913
908
rw [snorm_eq_snorm' hp0_lt.ne.symm hp_lt_top.ne, snorm_eq_snorm' hq0_lt.ne.symm hq_top],
914
909
have hpq_real : p.to_real ≤ q.to_real, by rwa ennreal.to_real_le_to_real hp_lt_top.ne hq_top,
915
910
exact snorm'_le_snorm'_mul_rpow_measure_univ hp_pos hpq_real hf,
@@ -965,8 +960,7 @@ begin
965
960
by rwa [hp_top, top_le_iff] at hpq,
966
961
rw [hp_top],
967
962
rwa hq_top at hfq_lt_top, },
968
- have hp_pos : 0 < p.to_real,
969
- from ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) hp0.symm, hp_top⟩,
963
+ have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0 hp_top,
970
964
by_cases hq_top : q = ∞,
971
965
{ rw snorm_eq_snorm' hp0 hp_top,
972
966
rw [hq_top, snorm_exponent_top] at hfq_lt_top,
@@ -1057,8 +1051,7 @@ begin
1057
1051
{ simp [h_top, snorm_ess_sup_const_smul], },
1058
1052
repeat { rw snorm_eq_snorm' h0 h_top, },
1059
1053
rw ←ne.def at h0,
1060
- exact snorm'_const_smul c
1061
- (ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) h0.symm, h_top⟩),
1054
+ exact snorm'_const_smul c (ennreal.to_real_pos h0 h_top),
1062
1055
end
1063
1056
1064
1057
lemma mem_ℒp.const_smul [measurable_space 𝕜] [opens_measurable_space 𝕜] [borel_space E] {f : α → E}
@@ -1537,8 +1530,7 @@ variables {hs}
1537
1530
lemma snorm_indicator_const {c : G} (hs : measurable_set s) (hp : p ≠ 0 ) (hp_top : p ≠ ∞) :
1538
1531
snorm (s.indicator (λ x, c)) p μ = ∥c∥₊ * (μ s) ^ (1 / p.to_real) :=
1539
1532
begin
1540
- have hp_pos : 0 < p.to_real,
1541
- from ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) hp.symm, hp_top⟩,
1533
+ have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp hp_top,
1542
1534
rw snorm_eq_lintegral_rpow_nnnorm hp hp_top,
1543
1535
simp_rw [nnnorm_indicator_eq_indicator_nnnorm, ennreal.coe_indicator],
1544
1536
have h_indicator_pow : (λ a : α, s.indicator (λ (x : α), (∥c∥₊ : ℝ≥0 ∞)) a ^ p.to_real)
@@ -1593,7 +1585,7 @@ begin
1593
1585
congr,
1594
1586
simp_rw [nnnorm_indicator_eq_indicator_nnnorm, ennreal.coe_indicator],
1595
1587
have h_zero : (λ x, x ^ p.to_real) (0 : ℝ≥0 ∞) = 0 ,
1596
- by simp [ennreal.to_real_pos_iff.mpr ⟨ne.bot_lt hp_zero, hp_top⟩ ],
1588
+ by simp [ennreal.to_real_pos hp_zero hp_top],
1597
1589
exact (set.indicator_comp_of_zero h_zero).symm,
1598
1590
end
1599
1591
@@ -2076,8 +2068,7 @@ begin
2076
2068
{ simp_rw [hp_top],
2077
2069
exact snorm_exponent_top_lim_le_liminf_snorm_exponent_top h_lim, },
2078
2070
simp_rw snorm_eq_snorm' hp0 hp_top,
2079
- have hp_pos : 0 < p.to_real,
2080
- from ennreal.to_real_pos_iff.mpr ⟨lt_of_le_of_ne (zero_le _) hp0.symm, hp_top⟩,
2071
+ have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0 hp_top,
2081
2072
exact snorm'_lim_le_liminf_snorm' hp_pos hf h_lim,
2082
2073
end
2083
2074
0 commit comments