Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 9157b57

Browse files
refactor(topology/algebra/normed_group): generalize to semi_normed_group (#7066)
The completion of a `semi_normed_group` is a `normed_group` (and similarly for `pseudo_metric_space`).
1 parent d89bfc4 commit 9157b57

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

src/topology/algebra/normed_group.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,11 +29,11 @@ instance [uniform_space V] [has_norm V] :
2929
has_norm (completion V) :=
3030
{ norm := completion.extension has_norm.norm }
3131

32-
@[simp] lemma norm_coe {V} [normed_group V] (v : V) :
32+
@[simp] lemma norm_coe {V} [semi_normed_group V] (v : V) :
3333
∥(v : completion V)∥ = ∥v∥ :=
3434
completion.extension_coe uniform_continuous_norm v
3535

36-
instance [normed_group V] : normed_group (completion V) :=
36+
instance [semi_normed_group V] : normed_group (completion V) :=
3737
{ dist_eq :=
3838
begin
3939
intros x y,

src/topology/metric_space/completion.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open_locale filter
2020
noncomputable theory
2121

2222
universes u
23-
variables {α : Type u} [metric_space α]
23+
variables {α : Type u} [pseudo_metric_space α]
2424

2525
namespace metric
2626

@@ -165,7 +165,7 @@ protected lemma completion.uniformity_dist :
165165
uniformity (completion α) = (⨅ ε>0, 𝓟 {p | dist p.1 p.2 < ε}) :=
166166
by simpa [infi_subtype] using @completion.uniformity_dist' α _
167167

168-
/-- Metric space structure on the completion of a metric space. -/
168+
/-- Metric space structure on the completion of a pseudo_metric space. -/
169169
instance completion.metric_space : metric_space (completion α) :=
170170
{ dist_self := completion.dist_self,
171171
eq_of_dist_eq_zero := completion.eq_of_dist_eq_zero,

0 commit comments

Comments
 (0)