@@ -145,7 +145,7 @@ noncomputable theory
145
145
open topological_space (second_countable_topology)
146
146
open measure_theory set classical filter
147
147
148
- open_locale classical topological_space filter ennreal
148
+ open_locale classical topological_space filter ennreal big_operators
149
149
150
150
variables {α β 𝕜 E F : Type *} [linear_order α] [measurable_space α]
151
151
[measurable_space E] [normed_group E]
@@ -229,6 +229,14 @@ by split; simp
229
229
⟨(hab.1 .union hbc.1 ).mono_set Ioc_subset_Ioc_union_Ioc,
230
230
(hbc.2 .union hab.2 ).mono_set Ioc_subset_Ioc_union_Ioc⟩
231
231
232
+ lemma trans_iterate {a : ℕ → α} {n : ℕ} (hint : ∀ k < n, interval_integrable f μ (a k) (a $ k+1 )) :
233
+ interval_integrable f μ (a 0 ) (a n) :=
234
+ begin
235
+ induction n with n hn,
236
+ { simp },
237
+ { exact (hn (λ k hk, hint k (hk.trans n.lt_succ_self))).trans (hint n n.lt_succ_self) }
238
+ end
239
+
232
240
lemma neg [borel_space E] (h : interval_integrable f μ a b) : interval_integrable (-f) μ a b :=
233
241
⟨h.1 .neg, h.2 .neg⟩
234
242
@@ -652,6 +660,18 @@ lemma integral_add_adjacent_intervals (hab : interval_integrable f μ a b)
652
660
∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ = ∫ x in a..c, f x ∂μ :=
653
661
by rw [← add_neg_eq_zero, ← integral_symm, integral_add_adjacent_intervals_cancel hab hbc]
654
662
663
+ lemma sum_integral_adjacent_intervals {a : ℕ → α} {n : ℕ}
664
+ (hint : ∀ k < n, interval_integrable f μ (a k) (a $ k+1 )) :
665
+ ∑ (k : ℕ) in finset.range n, ∫ x in (a k)..(a $ k+1 ), f x ∂μ = ∫ x in (a 0 )..(a n), f x ∂μ :=
666
+ begin
667
+ induction n with n hn,
668
+ { simp },
669
+ { rw [finset.sum_range_succ, hn (λ k hk, hint k (hk.trans n.lt_succ_self))],
670
+ exact integral_add_adjacent_intervals
671
+ (interval_integrable.trans_iterate $ λ k hk, hint k (hk.trans n.lt_succ_self))
672
+ (hint n n.lt_succ_self) }
673
+ end
674
+
655
675
lemma integral_interval_sub_left (hab : interval_integrable f μ a b)
656
676
(hac : interval_integrable f μ a c) :
657
677
∫ x in a..b, f x ∂μ - ∫ x in a..c, f x ∂μ = ∫ x in c..b, f x ∂μ :=
0 commit comments