@@ -86,11 +86,10 @@ begin
86
86
end
87
87
88
88
/-- The uniform norm of the Fourier integral of `f` is bounded by the `L¹` norm of `f`. -/
89
- lemma fourier_integral_norm_le (e : (multiplicative 𝕜) →* 𝕊) { μ : measure V}
90
- (L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜) { f : V → E} (hf : integrable f μ ) (w : W) :
91
- ‖fourier_integral e μ L f w‖ ≤ ‖hf.to_L1 f‖ :=
89
+ lemma norm_fourier_integral_le_integral_norm (e : (multiplicative 𝕜) →* 𝕊) ( μ : measure V)
90
+ (L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜) ( f : V → E) (w : W) :
91
+ ‖fourier_integral e μ L f w‖ ≤ ∫ (v : V), ‖f v‖ ∂μ :=
92
92
begin
93
- rw L1.norm_of_fun_eq_integral_norm,
94
93
refine (norm_integral_le_integral_norm _).trans (le_of_eq _),
95
94
simp_rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul],
96
95
end
@@ -126,20 +125,29 @@ section continuous
126
125
variables [topological_space 𝕜] [topological_ring 𝕜] [topological_space V] [borel_space V]
127
126
[topological_space W] {e : (multiplicative 𝕜) →* 𝕊} {μ : measure V} {L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜}
128
127
129
- /-- If `f` is integrable, then the Fourier integral is convergent for all `w`. -/
130
- lemma fourier_integral_convergent
131
- (he : continuous e) (hL : continuous (λ p : V × W, L p.1 p.2 ))
132
- {f : V → E} (hf : integrable f μ) (w : W) :
133
- integrable (λ (v : V), (e [-L v w]) • f v) μ :=
128
+ /-- For any `w`, the Fourier integral is convergent iff `f` is integrable. -/
129
+ lemma fourier_integral_convergent_iff (he : continuous e) (hL : continuous (λ p : V × W, L p.1 p.2 ))
130
+ {f : V → E} (w : W) :
131
+ integrable f μ ↔ integrable (λ (v : V), (e [-L v w]) • f v) μ :=
134
132
begin
135
- rw continuous_induced_rng at he,
136
- have c : continuous (λ v, e[-L v w]),
137
- { refine he.comp (continuous_of_add.comp (continuous.neg _)),
138
- exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) },
139
- rw ←integrable_norm_iff (c.ae_strongly_measurable.smul hf.1 ),
140
- convert hf.norm,
133
+ -- first prove one-way implication
134
+ have aux : ∀ {g : V → E} (hg : integrable g μ) (x : W),
135
+ integrable (λ (v : V), (e [-L v x]) • g v) μ,
136
+ { intros g hg x,
137
+ have c : continuous (λ v, e[-L v x]),
138
+ { refine (continuous_induced_rng.mp he).comp (continuous_of_add.comp (continuous.neg _)),
139
+ exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) },
140
+ rw ←integrable_norm_iff (c.ae_strongly_measurable.smul hg.1 ),
141
+ convert hg.norm,
142
+ ext1 v,
143
+ rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] },
144
+ -- then use it for both directions
145
+ refine ⟨λ hf, aux hf w, λ hf, _⟩,
146
+ convert aux hf (-w),
141
147
ext1 v,
142
- rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul]
148
+ rw [←smul_assoc, smul_eq_mul, ←submonoid.coe_mul, ←monoid_hom.map_mul,
149
+ ←of_add_add, linear_map.map_neg, neg_neg, ←sub_eq_add_neg, sub_self, of_add_zero,
150
+ monoid_hom.map_one, submonoid.coe_one, one_smul],
143
151
end
144
152
145
153
variables [complete_space E]
@@ -153,8 +161,8 @@ begin
153
161
dsimp only [pi.add_apply, fourier_integral],
154
162
simp_rw smul_add,
155
163
rw integral_add,
156
- { exact fourier_integral_convergent he hL hf w },
157
- { exact fourier_integral_convergent he hL hg w },
164
+ { exact (fourier_integral_convergent_iff he hL w).mp hf },
165
+ { exact (fourier_integral_convergent_iff he hL w).mp hg },
158
166
end
159
167
160
168
/-- The Fourier integral of an `L^1` function is a continuous function. -/
@@ -164,7 +172,7 @@ lemma fourier_integral_continuous [topological_space.first_countable_topology W]
164
172
continuous (fourier_integral e μ L f) :=
165
173
begin
166
174
apply continuous_of_dominated,
167
- { exact λ w, (fourier_integral_convergent he hL hf w ).1 },
175
+ { exact λ w, ((fourier_integral_convergent_iff he hL w).mp hf ).1 },
168
176
{ refine λ w, ae_of_all _ (λ v, _),
169
177
{ exact λ v, ‖f v‖ },
170
178
{ rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] } },
@@ -204,10 +212,10 @@ lemma fourier_integral_smul_const
204
212
vector_fourier.fourier_integral_smul_const _ _ _ _ _
205
213
206
214
/-- The uniform norm of the Fourier transform of `f` is bounded by the `L¹` norm of `f`. -/
207
- lemma fourier_integral_norm_le (e : (multiplicative 𝕜) →* 𝕊) {μ : measure 𝕜}
208
- {f : 𝕜 → E} (hf : integrable f μ ) (w : 𝕜) :
209
- ‖fourier_integral e μ f w‖ ≤ ‖hf.to_L1 f‖ :=
210
- vector_fourier.fourier_integral_norm_le _ _ _ _
215
+ lemma norm_fourier_integral_le_integral_norm
216
+ (e : (multiplicative 𝕜) →* 𝕊) (μ : measure 𝕜) (f : 𝕜 → E ) (w : 𝕜) :
217
+ ‖fourier_integral e μ f w‖ ≤ ∫ x : 𝕜, ‖f x‖ ∂μ :=
218
+ vector_fourier.norm_fourier_integral_le_integral_norm _ _ _ _ _
211
219
212
220
/-- The Fourier transform converts right-translation into scalar multiplication by a phase factor.-/
213
221
lemma fourier_integral_comp_add_right [has_measurable_add 𝕜]
0 commit comments