Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 9425b6f

Browse files
loefflerdsgouezel
andcommitted
feat(analysis/fourier): Riemann-Lebesgue lemma (#17719)
This PR adds a proof that for any function `f` on a finite-dimensional real vector space `V`, the integral `∫ (v : V), exp (-2 * π * w v * I) • f x` tends to 0 as `w` goes to infinity (wrt the cocompact filter on the dual space `W` of `V`). Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr>
1 parent 9d684a8 commit 9425b6f

File tree

6 files changed

+368
-209
lines changed

6 files changed

+368
-209
lines changed

docs/undergrad.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -527,7 +527,7 @@ Measures and integral calculus:
527527
regularization by convolution: 'has_compact_support.cont_diff_convolution_left'
528528
Fourier analysis:
529529
Fourier series of locally integrable periodic real-valued functions: 'fourier_basis'
530-
Riemann-Lebesgue lemma: ''
530+
Riemann-Lebesgue lemma: 'tendsto_integral_exp_smul_cocompact'
531531
convolution product of periodic functions: ''
532532
Dirichlet theorem: ''
533533
Fejer theorem: ''

src/analysis/fourier/fourier_transform.lean

Lines changed: 31 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -86,11 +86,10 @@ begin
8686
end
8787

8888
/-- The uniform norm of the Fourier integral of `f` is bounded by the `L¹` norm of `f`. -/
89-
lemma fourier_integral_norm_le (e : (multiplicative 𝕜) →* 𝕊) {μ : measure V}
90-
(L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜) {f : V → E} (hf : integrable f μ) (w : W) :
91-
‖fourier_integral e μ L f w‖ ≤ ‖hf.to_L1 f‖ :=
89+
lemma norm_fourier_integral_le_integral_norm (e : (multiplicative 𝕜) →* 𝕊) (μ : measure V)
90+
(L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜) (f : V → E) (w : W) :
91+
‖fourier_integral e μ L f w‖ ≤ ∫ (v : V), ‖f v‖ ∂μ :=
9292
begin
93-
rw L1.norm_of_fun_eq_integral_norm,
9493
refine (norm_integral_le_integral_norm _).trans (le_of_eq _),
9594
simp_rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul],
9695
end
@@ -126,20 +125,29 @@ section continuous
126125
variables [topological_space 𝕜] [topological_ring 𝕜] [topological_space V] [borel_space V]
127126
[topological_space W] {e : (multiplicative 𝕜) →* 𝕊} {μ : measure V} {L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜}
128127

129-
/-- If `f` is integrable, then the Fourier integral is convergent for all `w`. -/
130-
lemma fourier_integral_convergent
131-
(he : continuous e) (hL : continuous (λ p : V × W, L p.1 p.2))
132-
{f : V → E} (hf : integrable f μ) (w : W) :
133-
integrable (λ (v : V), (e [-L v w]) • f v) μ :=
128+
/-- For any `w`, the Fourier integral is convergent iff `f` is integrable. -/
129+
lemma fourier_integral_convergent_iff (he : continuous e) (hL : continuous (λ p : V × W, L p.1 p.2))
130+
{f : V → E} (w : W) :
131+
integrable f μ ↔ integrable (λ (v : V), (e [-L v w]) • f v) μ :=
134132
begin
135-
rw continuous_induced_rng at he,
136-
have c : continuous (λ v, e[-L v w]),
137-
{ refine he.comp (continuous_of_add.comp (continuous.neg _)),
138-
exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) },
139-
rw ←integrable_norm_iff (c.ae_strongly_measurable.smul hf.1),
140-
convert hf.norm,
133+
-- first prove one-way implication
134+
have aux : ∀ {g : V → E} (hg : integrable g μ) (x : W),
135+
integrable (λ (v : V), (e [-L v x]) • g v) μ,
136+
{ intros g hg x,
137+
have c : continuous (λ v, e[-L v x]),
138+
{ refine (continuous_induced_rng.mp he).comp (continuous_of_add.comp (continuous.neg _)),
139+
exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) },
140+
rw ←integrable_norm_iff (c.ae_strongly_measurable.smul hg.1),
141+
convert hg.norm,
142+
ext1 v,
143+
rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] },
144+
-- then use it for both directions
145+
refine ⟨λ hf, aux hf w, λ hf, _⟩,
146+
convert aux hf (-w),
141147
ext1 v,
142-
rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul]
148+
rw [←smul_assoc, smul_eq_mul, ←submonoid.coe_mul, ←monoid_hom.map_mul,
149+
←of_add_add, linear_map.map_neg, neg_neg, ←sub_eq_add_neg, sub_self, of_add_zero,
150+
monoid_hom.map_one, submonoid.coe_one, one_smul],
143151
end
144152

145153
variables [complete_space E]
@@ -153,8 +161,8 @@ begin
153161
dsimp only [pi.add_apply, fourier_integral],
154162
simp_rw smul_add,
155163
rw integral_add,
156-
{ exact fourier_integral_convergent he hL hf w },
157-
{ exact fourier_integral_convergent he hL hg w },
164+
{ exact (fourier_integral_convergent_iff he hL w).mp hf },
165+
{ exact (fourier_integral_convergent_iff he hL w).mp hg },
158166
end
159167

160168
/-- The Fourier integral of an `L^1` function is a continuous function. -/
@@ -164,7 +172,7 @@ lemma fourier_integral_continuous [topological_space.first_countable_topology W]
164172
continuous (fourier_integral e μ L f) :=
165173
begin
166174
apply continuous_of_dominated,
167-
{ exact λ w, (fourier_integral_convergent he hL hf w).1 },
175+
{ exact λ w, ((fourier_integral_convergent_iff he hL w).mp hf).1 },
168176
{ refine λ w, ae_of_all _ (λ v, _),
169177
{ exact λ v, ‖f v‖ },
170178
{ rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] } },
@@ -204,10 +212,10 @@ lemma fourier_integral_smul_const
204212
vector_fourier.fourier_integral_smul_const _ _ _ _ _
205213

206214
/-- The uniform norm of the Fourier transform of `f` is bounded by the `L¹` norm of `f`. -/
207-
lemma fourier_integral_norm_le (e : (multiplicative 𝕜) →* 𝕊) {μ : measure 𝕜}
208-
{f : 𝕜 → E} (hf : integrable f μ) (w : 𝕜) :
209-
‖fourier_integral e μ f w‖ ≤ ‖hf.to_L1 f‖ :=
210-
vector_fourier.fourier_integral_norm_le _ _ _ _
215+
lemma norm_fourier_integral_le_integral_norm
216+
(e : (multiplicative 𝕜) →* 𝕊) (μ : measure 𝕜) (f : 𝕜 → E) (w : 𝕜) :
217+
‖fourier_integral e μ f w‖ ≤ ∫ x : 𝕜, ‖f x‖ ∂μ :=
218+
vector_fourier.norm_fourier_integral_le_integral_norm _ _ _ _ _
211219

212220
/-- The Fourier transform converts right-translation into scalar multiplication by a phase factor.-/
213221
lemma fourier_integral_comp_add_right [has_measurable_add 𝕜]

0 commit comments

Comments
 (0)