@@ -47,7 +47,7 @@ variables {ι : Type*}
47
47
structure prepartition (I : box ι) :=
48
48
(boxes : finset (box ι))
49
49
(le_of_mem' : ∀ J ∈ boxes, J ≤ I)
50
- (pairwise_disjoint : pairwise_on ↑boxes (disjoint on (coe : box ι → set (ι → ℝ))))
50
+ (pairwise_disjoint : set.pairwise ↑boxes (disjoint on (coe : box ι → set (ι → ℝ))))
51
51
52
52
namespace prepartition
53
53
@@ -224,7 +224,7 @@ function. -/
224
224
end ,
225
225
pairwise_disjoint :=
226
226
begin
227
- simp only [pairwise_on , finset.mem_coe, finset.mem_bUnion],
227
+ simp only [set.pairwise , finset.mem_coe, finset.mem_bUnion],
228
228
rintro J₁' ⟨J₁, hJ₁, hJ₁'⟩ J₂' ⟨J₂, hJ₂, hJ₂'⟩ Hne x ⟨hx₁, hx₂⟩, apply Hne,
229
229
obtain rfl : J₁ = J₂,
230
230
from π.eq_of_mem_of_mem hJ₁ hJ₂ ((πi J₁).le_of_mem hJ₁' hx₁)
308
308
the empty one if it exists. -/
309
309
def of_with_bot (boxes : finset (with_bot (box ι)))
310
310
(le_of_mem : ∀ J ∈ boxes, (J : with_bot (box ι)) ≤ I)
311
- (pairwise_disjoint : pairwise_on (boxes : set (with_bot (box ι))) disjoint) :
311
+ (pairwise_disjoint : set.pairwise (boxes : set (with_bot (box ι))) disjoint) :
312
312
prepartition I :=
313
313
{ boxes := boxes.erase_none,
314
314
le_of_mem' := λ J hJ,
@@ -328,7 +328,7 @@ mem_erase_none
328
328
329
329
@[simp] lemma Union_of_with_bot (boxes : finset (with_bot (box ι)))
330
330
(le_of_mem : ∀ J ∈ boxes, (J : with_bot (box ι)) ≤ I)
331
- (pairwise_disjoint : pairwise_on (boxes : set (with_bot (box ι))) disjoint) :
331
+ (pairwise_disjoint : set.pairwise (boxes : set (with_bot (box ι))) disjoint) :
332
332
(of_with_bot boxes le_of_mem pairwise_disjoint).Union = ⋃ J ∈ boxes, ↑J :=
333
333
begin
334
334
suffices : (⋃ (J : box ι) (hJ : ↑J ∈ boxes), ↑J) = ⋃ J ∈ boxes, ↑J,
339
339
340
340
lemma of_with_bot_le {boxes : finset (with_bot (box ι))}
341
341
{le_of_mem : ∀ J ∈ boxes, (J : with_bot (box ι)) ≤ I}
342
- {pairwise_disjoint : pairwise_on (boxes : set (with_bot (box ι))) disjoint}
342
+ {pairwise_disjoint : set.pairwise (boxes : set (with_bot (box ι))) disjoint}
343
343
(H : ∀ J ∈ boxes, J ≠ ⊥ → ∃ J' ∈ π, J ≤ ↑J') :
344
344
of_with_bot boxes le_of_mem pairwise_disjoint ≤ π :=
345
345
have ∀ (J : box ι), ↑J ∈ boxes → ∃ J' ∈ π, J ≤ J',
@@ -348,7 +348,7 @@ by simpa [of_with_bot, le_def]
348
348
349
349
lemma le_of_with_bot {boxes : finset (with_bot (box ι))}
350
350
{le_of_mem : ∀ J ∈ boxes, (J : with_bot (box ι)) ≤ I}
351
- {pairwise_disjoint : pairwise_on (boxes : set (with_bot (box ι))) disjoint}
351
+ {pairwise_disjoint : set.pairwise (boxes : set (with_bot (box ι))) disjoint}
352
352
(H : ∀ J ∈ π, ∃ J' ∈ boxes, ↑J ≤ J') :
353
353
π ≤ of_with_bot boxes le_of_mem pairwise_disjoint :=
354
354
begin
@@ -360,10 +360,10 @@ end
360
360
361
361
lemma of_with_bot_mono {boxes₁ : finset (with_bot (box ι))}
362
362
{le_of_mem₁ : ∀ J ∈ boxes₁, (J : with_bot (box ι)) ≤ I}
363
- {pairwise_disjoint₁ : pairwise_on (boxes₁ : set (with_bot (box ι))) disjoint}
363
+ {pairwise_disjoint₁ : set.pairwise (boxes₁ : set (with_bot (box ι))) disjoint}
364
364
{boxes₂ : finset (with_bot (box ι))}
365
365
{le_of_mem₂ : ∀ J ∈ boxes₂, (J : with_bot (box ι)) ≤ I}
366
- {pairwise_disjoint₂ : pairwise_on (boxes₂ : set (with_bot (box ι))) disjoint}
366
+ {pairwise_disjoint₂ : set.pairwise (boxes₂ : set (with_bot (box ι))) disjoint}
367
367
(H : ∀ J ∈ boxes₁, J ≠ ⊥ → ∃ J' ∈ boxes₂, J ≤ J') :
368
368
of_with_bot boxes₁ le_of_mem₁ pairwise_disjoint₁ ≤
369
369
of_with_bot boxes₂ le_of_mem₂ pairwise_disjoint₂ :=
@@ -372,7 +372,7 @@ le_of_with_bot _ $ λ J hJ, H J (mem_of_with_bot.1 hJ) (with_bot.coe_ne_bot _)
372
372
lemma sum_of_with_bot {M : Type *} [add_comm_monoid M]
373
373
(boxes : finset (with_bot (box ι)))
374
374
(le_of_mem : ∀ J ∈ boxes, (J : with_bot (box ι)) ≤ I)
375
- (pairwise_disjoint : pairwise_on (boxes : set (with_bot (box ι))) disjoint)
375
+ (pairwise_disjoint : set.pairwise (boxes : set (with_bot (box ι))) disjoint)
376
376
(f : box ι → M) :
377
377
∑ J in (of_with_bot boxes le_of_mem pairwise_disjoint).boxes, f J =
378
378
∑ J in boxes, option.elim J 0 f :=
@@ -384,7 +384,7 @@ def restrict (π : prepartition I) (J : box ι) :
384
384
of_with_bot (π.boxes.image (λ J', J ⊓ J'))
385
385
(λ J' hJ', by { rcases finset.mem_image.1 hJ' with ⟨J', -, rfl⟩, exact inf_le_left })
386
386
begin
387
- simp only [pairwise_on , on_fun, finset.mem_coe, finset.mem_image],
387
+ simp only [set.pairwise , on_fun, finset.mem_coe, finset.mem_image],
388
388
rintro _ ⟨J₁, h₁, rfl⟩ _ ⟨J₂, h₂, rfl⟩ Hne,
389
389
have : J₁ ≠ J₂, by { rintro rfl, exact Hne rfl },
390
390
exact ((box.disjoint_coe.2 $ π.disjoint_coe_of_mem h₁ h₂ this ).inf_left' _).inf_right' _
@@ -523,7 +523,7 @@ by convert sum_fiberwise_of_maps_to (λ _, finset.mem_image_of_mem f) g
523
523
le_of_mem' := λ J hJ, (finset.mem_union.1 hJ).elim π₁.le_of_mem π₂.le_of_mem,
524
524
pairwise_disjoint :=
525
525
suffices ∀ (J₁ ∈ π₁) (J₂ ∈ π₂), J₁ ≠ J₂ → disjoint (J₁ : set (ι → ℝ)) J₂,
526
- by simpa [pairwise_on_union_of_symmetric (symmetric_disjoint.comap _), pairwise_disjoint],
526
+ by simpa [pairwise_union_of_symmetric (symmetric_disjoint.comap _), pairwise_disjoint],
527
527
λ J₁ h₁ J₂ h₂ _, h.mono (π₁.subset_Union h₁) (π₂.subset_Union h₂) }
528
528
529
529
@[simp] lemma mem_disj_union (H : disjoint π₁.Union π₂.Union) :
0 commit comments