@@ -5,6 +5,7 @@ Authors: Floris van Doorn
5
5
-/
6
6
import measure_theory.integral.bochner
7
7
import measure_theory.group.measure
8
+ import measure_theory.group.action
8
9
9
10
/-!
10
11
# Integration on Groups
@@ -18,7 +19,7 @@ namespace measure_theory
18
19
open measure topological_space
19
20
open_locale ennreal
20
21
21
- variables {𝕜 G E F : Type *} [measurable_space G]
22
+ variables {𝕜 M α G E F : Type *} [measurable_space G]
22
23
variables [normed_group E] [normed_space ℝ E] [complete_space E] [normed_group F]
23
24
variables {μ : measure G} {f : G → E} {g : G}
24
25
@@ -68,10 +69,15 @@ begin
68
69
simp [map_mul_right_eq_self μ g]
69
70
end
70
71
72
+ @[simp, to_additive]
73
+ lemma lintegral_div_right_eq_self [is_mul_right_invariant μ] (f : G → ℝ≥0 ∞) (g : G) :
74
+ ∫⁻ x, f (x / g) ∂μ = ∫⁻ x, f x ∂μ :=
75
+ by simp_rw [div_eq_mul_inv, lintegral_mul_right_eq_self f g⁻¹]
76
+
71
77
/-- Translating a function by left-multiplication does not change its integral with respect to a
72
78
left-invariant measure. -/
73
- @[to_additive " Translating a function by left-addition does not change its integral with respect to
74
- a left-invariant measure." ]
79
+ @[simp, to_additive " Translating a function by left-addition does not change its integral with
80
+ respect to a left-invariant measure." ]
75
81
lemma integral_mul_left_eq_self [is_mul_left_invariant μ] (f : G → E) (g : G) :
76
82
∫ x, f (g * x) ∂μ = ∫ x, f x ∂μ :=
77
83
begin
82
88
83
89
/-- Translating a function by right-multiplication does not change its integral with respect to a
84
90
right-invariant measure. -/
85
- @[to_additive " Translating a function by right-addition does not change its integral with respect to
86
- a right-invariant measure." ]
91
+ @[simp, to_additive " Translating a function by right-addition does not change its integral with
92
+ respect to a right-invariant measure." ]
87
93
lemma integral_mul_right_eq_self [is_mul_right_invariant μ] (f : G → E) (g : G) :
88
94
∫ x, f (x * g) ∂μ = ∫ x, f x ∂μ :=
89
95
begin
92
98
rw [← h_mul.integral_map, map_mul_right_eq_self]
93
99
end
94
100
101
+ @[simp, to_additive]
102
+ lemma integral_div_right_eq_self [is_mul_right_invariant μ] (f : G → E) (g : G) :
103
+ ∫ x, f (x / g) ∂μ = ∫ x, f x ∂μ :=
104
+ by simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
105
+
95
106
/-- If some left-translate of a function negates it, then the integral of the function with respect
96
107
to a left-invariant measure is 0. -/
97
108
@[to_additive " If some left-translate of a function negates it, then the integral of the function
@@ -139,14 +150,39 @@ begin
139
150
{ exact (measurable_id'.const_mul g⁻¹).inv.ae_measurable }
140
151
end
141
152
142
- @[to_additive]
153
+ @[simp, to_additive]
154
+ lemma integrable_comp_div_left (f : G → F)
155
+ [is_inv_invariant μ] [is_mul_left_invariant μ] (g : G) :
156
+ integrable (λ t, f (g / t)) μ ↔ integrable f μ :=
157
+ begin
158
+ refine ⟨λ h, _, λ h, h.comp_div_left g⟩,
159
+ convert h.comp_inv.comp_mul_left g⁻¹,
160
+ simp_rw [div_inv_eq_mul, mul_inv_cancel_left]
161
+ end
162
+
163
+ @[simp, to_additive]
143
164
lemma integral_div_left_eq_self (f : G → E) (μ : measure G) [is_inv_invariant μ]
144
165
[is_mul_left_invariant μ] (x' : G) : ∫ x, f (x' / x) ∂μ = ∫ x, f x ∂μ :=
145
166
by simp_rw [div_eq_mul_inv, integral_inv_eq_self (λ x, f (x' * x)) μ,
146
167
integral_mul_left_eq_self f x']
147
168
148
169
end measurable_mul
149
170
171
+ section smul
172
+
173
+ variables [group G] [measurable_space α] [mul_action G α] [has_measurable_smul G α]
174
+
175
+ @[simp, to_additive]
176
+ lemma integral_smul_eq_self {μ : measure α} [smul_invariant_measure G α μ] (f : α → E) {g : G} :
177
+ ∫ x, f (g • x) ∂μ = ∫ x, f x ∂μ :=
178
+ begin
179
+ have h : measurable_embedding (λ x : α, g • x) :=
180
+ (measurable_equiv.smul g).measurable_embedding,
181
+ rw [← h.integral_map, map_smul]
182
+ end
183
+
184
+ end smul
185
+
150
186
151
187
section topological_group
152
188
0 commit comments