@@ -510,6 +510,11 @@ def comap (f : M → N) (H : ∀ x y, f (x * y) = f x * f y) (c : con N) : con M
510
510
{ mul' := λ w x y z h1 h2, show c (f (w * y)) (f (x * z)), by rw [H, H]; exact c.mul h1 h2,
511
511
..c.to_setoid.comap f }
512
512
513
+ @[simp, to_additive] lemma comap_rel {f : M → N} (H : ∀ x y, f (x * y) = f x * f y)
514
+ {c : con N} {x y : M} :
515
+ comap f H c x y ↔ c (f x) (f y) :=
516
+ iff.rfl
517
+
513
518
section
514
519
open quotient
515
520
@@ -606,7 +611,7 @@ lemma le_iff {c d : con M} : c ≤ d ↔ (c : submonoid (M × M)) ≤ d :=
606
611
def ker (f : M →* P) : con M := mul_ker f f.3
607
612
608
613
/-- The definition of the congruence relation defined by a monoid homomorphism's kernel. -/
609
- @[to_additive " The definition of the additive congruence relation defined by an `add_monoid`
614
+ @[simp, to_additive " The definition of the additive congruence relation defined by an `add_monoid`
610
615
homomorphism's kernel." ]
611
616
lemma ker_rel (f : M →* P) {x y} : ker f x y ↔ f x = f y := iff.rfl
612
617
@@ -637,10 +642,9 @@ variables {c}
637
642
@[to_additive " The natural homomorphism from an `add_monoid` to its quotient by a congruence
638
643
relation is surjective." ]
639
644
lemma mk'_surjective : surjective c.mk' :=
640
- λ x, by rcases x; exact ⟨x, rfl⟩
645
+ quotient.surjective_quotient_mk'
641
646
642
- @[simp, to_additive] lemma comp_mk'_apply (g : c.quotient →* P) {x} :
643
- g.comp c.mk' x = g x := rfl
647
+ @[simp, to_additive] lemma coe_mk' : (c.mk' : M → c.quotient) = coe := rfl
644
648
645
649
/-- The elements related to `x ∈ M`, `M` a monoid, by the kernel of a monoid homomorphism are
646
650
those in the preimage of `f(x)` under `f`. -/
@@ -674,7 +678,7 @@ def lift (H : c ≤ ker f) : c.quotient →* P :=
674
678
variables {c f}
675
679
676
680
/-- The diagram describing the universal property for quotients of monoids commutes. -/
677
- @[simp, to_additive " The diagram describing the universal property for quotients of `add_monoid`s
681
+ @[to_additive " The diagram describing the universal property for quotients of `add_monoid`s
678
682
commutes." ]
679
683
lemma lift_mk' (H : c ≤ ker f) (x) :
680
684
c.lift f H (c.mk' x) = f x := rfl
716
720
@[to_additive " The uniqueness part of the universal property for quotients of `add_monoid`s." ]
717
721
theorem lift_unique (H : c ≤ ker f) (g : c.quotient →* P)
718
722
(Hg : g.comp c.mk' = f) : g = c.lift f H :=
719
- lift_funext g (c.lift f H) $ λ x, by rw [lift_coe H, ←comp_mk'_apply, Hg]
723
+ lift_funext g (c.lift f H) $ λ x, by { subst f, refl }
720
724
721
725
/-- Given a congruence relation `c` on a monoid and a homomorphism `f` constant on `c`'s
722
726
equivalence classes, `f` has the same image as the homomorphism that `f` induces on the
0 commit comments