|
| 1 | +/- |
| 2 | +Copyright (c) 2022 María Inés de Frutos-Fernández. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: María Inés de Frutos-Fernández |
| 5 | +-/ |
| 6 | +import analysis.seminorm |
| 7 | + |
| 8 | +/-! |
| 9 | +# Seminorms and norms on rings |
| 10 | +
|
| 11 | +This file defines seminorms and norms on rings. These definitions are useful when one needs to |
| 12 | +consider multiple (semi)norms on a given ring. |
| 13 | +
|
| 14 | +## Main declarations |
| 15 | +
|
| 16 | +For a ring `R`: |
| 17 | +* `ring_seminorm`: A seminorm on a ring `R` is a function `f : R → ℝ` that preserves zero, takes |
| 18 | + nonnegative values, is subadditive and submultiplicative and such that `f (-x) = f x` for all |
| 19 | + `x ∈ R`. |
| 20 | +* `ring_norm`: A seminorm `f` is a norm if `f x = 0` if and only if `x = 0`. |
| 21 | +
|
| 22 | +## References |
| 23 | +
|
| 24 | +* [S. Bosch, U. Güntzer, R. Remmert, *Non-Archimedean Analysis*][bosch-guntzer-remmert] |
| 25 | +
|
| 26 | +## Tags |
| 27 | +ring_seminorm, ring_norm |
| 28 | +-/ |
| 29 | + |
| 30 | +set_option old_structure_cmd true |
| 31 | + |
| 32 | +open_locale nnreal |
| 33 | + |
| 34 | +variables {R S : Type*} (x y : R) (r : ℝ) |
| 35 | + |
| 36 | +/-- A seminorm on a ring `R` is a function `f : R → ℝ` that preserves zero, takes nonnegative |
| 37 | + values, is subadditive and submultiplicative and such that `f (-x) = f x` for all `x ∈ R`. -/ |
| 38 | +structure ring_seminorm (R : Type*) [non_unital_ring R] |
| 39 | + extends add_group_seminorm R := |
| 40 | +(mul_le' : ∀ x y : R, to_fun (x * y) ≤ to_fun x * to_fun y) |
| 41 | + |
| 42 | +/-- A function `f : R → ℝ` is a norm on a (nonunital) ring if it is a seminorm and `f x = 0` |
| 43 | + implies `x = 0`. -/ |
| 44 | +structure ring_norm (R : Type*) [non_unital_ring R] extends add_group_norm R, ring_seminorm R |
| 45 | + |
| 46 | +attribute [nolint doc_blame] ring_seminorm.to_add_group_seminorm ring_norm.to_add_group_norm |
| 47 | + ring_norm.to_ring_seminorm |
| 48 | + |
| 49 | +/-- `ring_seminorm_class F α` states that `F` is a type of seminorms on the ring `α`. |
| 50 | +
|
| 51 | +You should extend this class when you extend `ring_seminorm`. -/ |
| 52 | +class ring_seminorm_class (F : Type*) (α : out_param $ Type*) [non_unital_ring α] |
| 53 | + extends add_group_seminorm_class F α, submultiplicative_hom_class F α ℝ |
| 54 | + |
| 55 | +/-- `ring_norm_class F α` states that `F` is a type of norms on the ring `α`. |
| 56 | +
|
| 57 | +You should extend this class when you extend `ring_norm`. -/ |
| 58 | +class ring_norm_class (F : Type*) (α : out_param $ Type*) [non_unital_ring α] |
| 59 | + extends ring_seminorm_class F α, add_group_norm_class F α |
| 60 | + |
| 61 | +namespace ring_seminorm |
| 62 | + |
| 63 | +section non_unital_ring |
| 64 | + |
| 65 | +variables [non_unital_ring R] |
| 66 | + |
| 67 | +instance ring_seminorm_class : ring_seminorm_class (ring_seminorm R) R := |
| 68 | +{ coe := λ f, f.to_fun, |
| 69 | + coe_injective' := λ f g h, by cases f; cases g; congr', |
| 70 | + map_zero := λ f, f.map_zero', |
| 71 | + map_add_le_add := λ f, f.add_le', |
| 72 | + map_mul_le_mul := λ f, f.mul_le', |
| 73 | + map_neg_eq_map := λ f, f.neg' } |
| 74 | + |
| 75 | +/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ |
| 76 | +instance : has_coe_to_fun (ring_seminorm R) (λ _, R → ℝ) := fun_like.has_coe_to_fun |
| 77 | + |
| 78 | +@[simp] lemma to_fun_eq_coe (p : ring_seminorm R) : p.to_fun = p := rfl |
| 79 | + |
| 80 | +@[ext] lemma ext {p q : ring_seminorm R} : (∀ x, p x = q x) → p = q := fun_like.ext p q |
| 81 | + |
| 82 | +instance : has_zero (ring_seminorm R) := |
| 83 | +⟨{ mul_le' := λ _ _, (zero_mul _).ge, |
| 84 | + ..add_group_seminorm.has_zero.zero }⟩ |
| 85 | + |
| 86 | +lemma eq_zero_iff {p : ring_seminorm R} : p = 0 ↔ ∀ x, p x = 0 := fun_like.ext_iff |
| 87 | +lemma ne_zero_iff {p : ring_seminorm R} : p ≠ 0 ↔ ∃ x, p x ≠ 0 := by simp [eq_zero_iff] |
| 88 | + |
| 89 | +instance : inhabited (ring_seminorm R) := ⟨0⟩ |
| 90 | + |
| 91 | +/-- The trivial seminorm on a ring `R` is the `ring_seminorm` taking value `0` at `0` and `1` at |
| 92 | +every other element. -/ |
| 93 | +instance [decidable_eq R] : has_one (ring_seminorm R) := |
| 94 | +⟨{ mul_le' := λ x y, begin |
| 95 | + by_cases h : x * y = 0, |
| 96 | + { refine (if_pos h).trans_le (mul_nonneg _ _); |
| 97 | + { change _ ≤ ite _ _ _, |
| 98 | + split_ifs, |
| 99 | + exacts [le_rfl, zero_le_one] } }, |
| 100 | + { change ite _ _ _ ≤ ite _ _ _ * ite _ _ _, |
| 101 | + simp only [if_false, h, left_ne_zero_of_mul h, right_ne_zero_of_mul h, mul_one] } |
| 102 | + end, |
| 103 | + ..(1 : add_group_seminorm R) }⟩ |
| 104 | + |
| 105 | +@[simp] lemma apply_one [decidable_eq R] (x : R) : |
| 106 | + (1 : ring_seminorm R) x = if x = 0 then 0 else 1 := rfl |
| 107 | + |
| 108 | +end non_unital_ring |
| 109 | + |
| 110 | +section ring |
| 111 | + |
| 112 | +variables [ring R] (p : ring_seminorm R) |
| 113 | + |
| 114 | +lemma seminorm_one_eq_one_iff_ne_zero (hp : p 1 ≤ 1) : |
| 115 | + p 1 = 1 ↔ p ≠ 0 := |
| 116 | +begin |
| 117 | + refine ⟨λ h, ne_zero_iff.mpr ⟨1, by {rw h, exact one_ne_zero}⟩, λ h, _⟩, |
| 118 | + obtain hp0 | hp0 := (map_nonneg p (1 : R)).eq_or_gt, |
| 119 | + { cases h (ext $ λ x, (map_nonneg _ _).antisymm' _), |
| 120 | + simpa only [hp0, mul_one, mul_zero] using map_mul_le_mul p x 1}, |
| 121 | + { refine hp.antisymm ((le_mul_iff_one_le_left hp0).1 _), |
| 122 | + simpa only [one_mul] using map_mul_le_mul p (1 : R) _ } |
| 123 | +end |
| 124 | + |
| 125 | +end ring |
| 126 | + |
| 127 | +end ring_seminorm |
| 128 | + |
| 129 | +/-- The norm of a `non_unital_semi_normed_ring` as a `ring_seminorm`. -/ |
| 130 | +def norm_ring_seminorm (R : Type*) [non_unital_semi_normed_ring R] : |
| 131 | + ring_seminorm R := |
| 132 | +{ to_fun := norm, |
| 133 | + mul_le' := norm_mul_le, |
| 134 | + ..(norm_add_group_seminorm R) } |
| 135 | + |
| 136 | +namespace ring_norm |
| 137 | + |
| 138 | +variable [non_unital_ring R] |
| 139 | + |
| 140 | +instance ring_norm_class : ring_norm_class (ring_norm R) R := |
| 141 | +{ coe := λ f, f.to_fun, |
| 142 | + coe_injective' := λ f g h, by cases f; cases g; congr', |
| 143 | + map_zero := λ f, f.map_zero', |
| 144 | + map_add_le_add := λ f, f.add_le', |
| 145 | + map_mul_le_mul := λ f, f.mul_le', |
| 146 | + map_neg_eq_map := λ f, f.neg', |
| 147 | + eq_zero_of_map_eq_zero := λ f, f.eq_zero_of_map_eq_zero' } |
| 148 | + |
| 149 | +/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ |
| 150 | +instance : has_coe_to_fun (ring_norm R) (λ _, R → ℝ) := ⟨λ p, p.to_fun⟩ |
| 151 | + |
| 152 | +@[simp] lemma to_fun_eq_coe (p : ring_norm R) : p.to_fun = p := rfl |
| 153 | + |
| 154 | +@[ext] lemma ext {p q : ring_norm R} : (∀ x, p x = q x) → p = q := fun_like.ext p q |
| 155 | + |
| 156 | +variable (R) |
| 157 | + |
| 158 | +/-- The trivial norm on a ring `R` is the `ring_norm` taking value `0` at `0` and `1` at every |
| 159 | + other element. -/ |
| 160 | +instance [decidable_eq R] : has_one (ring_norm R) := |
| 161 | +⟨{ ..(1 : ring_seminorm R), ..(1 : add_group_norm R) }⟩ |
| 162 | + |
| 163 | +@[simp] lemma apply_one [decidable_eq R] (x : R) : (1 : ring_norm R) x = if x = 0 then 0 else 1 := |
| 164 | +rfl |
| 165 | + |
| 166 | +instance [decidable_eq R] : inhabited (ring_norm R) := ⟨1⟩ |
| 167 | + |
| 168 | +end ring_norm |
| 169 | + |
| 170 | +/-- A nonzero ring seminorm on a field `K` is a ring norm. -/ |
| 171 | +def ring_seminorm.to_ring_norm {K : Type*} [field K] (f : ring_seminorm K) (hnt : f ≠ 0) : |
| 172 | + ring_norm K := |
| 173 | +{ eq_zero_of_map_eq_zero' := λ x hx, |
| 174 | + begin |
| 175 | + obtain ⟨c, hc⟩ := ring_seminorm.ne_zero_iff.mp hnt, |
| 176 | + by_contradiction hn0, |
| 177 | + have hc0 : f c = 0, |
| 178 | + { rw [← mul_one c, ← mul_inv_cancel hn0, ← mul_assoc, mul_comm c, mul_assoc], |
| 179 | + exact le_antisymm (le_trans (map_mul_le_mul f _ _) |
| 180 | + (by rw [← ring_seminorm.to_fun_eq_coe, hx, zero_mul])) (map_nonneg f _) }, |
| 181 | + exact hc hc0, |
| 182 | + end, |
| 183 | + ..f } |
| 184 | + |
| 185 | +/-- The norm of a normed_ring as a ring_norm. -/ |
| 186 | +@[simps] def norm_ring_norm (R : Type*) [non_unital_normed_ring R] : ring_norm R := |
| 187 | +{ ..norm_add_group_norm R, ..norm_ring_seminorm R } |
0 commit comments