Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 97befb8

Browse files
feat(analysis/normed/ring/seminorm): add ring_seminorm, ring_norm (#14115)
We define structures `ring_seminorm` and `ring_norm`. These definitions are useful when one needs to consider multiple (semi)norms on a given ring. Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>
1 parent 3077b72 commit 97befb8

File tree

4 files changed

+210
-0
lines changed

4 files changed

+210
-0
lines changed

docs/references.bib

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -240,6 +240,15 @@ @Book{ borceux-vol3
240240
publisher = {Cambridge University Press}
241241
}
242242

243+
@Book{ bosch-guntzer-remmert,
244+
title = {Non-Archimedean Analysis : A Systematic Approach to Rigid Analytic Geometry},
245+
author = {S. Bosch and U. G{\"{u}}ntzer and R. Remmert},
246+
series = {Grundlehren der mathematischen Wissenschaften},
247+
volume = {261},
248+
year = {1984},
249+
publisher = {Springer-Verlag Berlin }
250+
}
251+
243252
@Book{ bourbaki1966,
244253
author = {Bourbaki, Nicolas},
245254
title = {Elements of mathematics. {G}eneral topology. {P}art 1},

src/analysis/normed/group/basic.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1200,6 +1200,16 @@ by rw [← nnreal.coe_eq_zero, coe_nnnorm, norm_eq_zero]
12001200

12011201
lemma nnnorm_ne_zero_iff {g : E} : ∥g∥₊ ≠ 0 ↔ g ≠ 0 := not_congr nnnorm_eq_zero
12021202

1203+
variables (E)
1204+
1205+
/-- The norm of a normed group as an additive group norm. -/
1206+
def norm_add_group_norm : add_group_norm E := ⟨norm, norm_zero, norm_add_le, norm_neg,
1207+
λ {g : E}, norm_eq_zero.mp⟩
1208+
1209+
@[simp] lemma coe_norm_add_group_norm : ⇑(norm_add_group_norm E) = norm := rfl
1210+
1211+
variables {E}
1212+
12031213
/-- An injective group homomorphism from an `add_comm_group` to a `normed_add_comm_group` induces a
12041214
`normed_add_comm_group` structure on the domain.
12051215

src/analysis/normed/group/seminorm.lean

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -169,6 +169,8 @@ variables [group E] [group F] [group G] {p q : group_seminorm E}
169169
`fun_like.has_coe_to_fun`. "]
170170
instance : has_coe_to_fun (group_seminorm E) (λ _, E → ℝ) := ⟨to_fun⟩
171171

172+
@[simp, to_additive] lemma to_fun_eq_coe : p.to_fun = p := rfl
173+
172174
@[ext, to_additive] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q
173175

174176
@[to_additive] instance : partial_order (group_seminorm E) :=
@@ -408,6 +410,8 @@ directly. -/
408410
`fun_like.has_coe_to_fun` directly. "]
409411
instance : has_coe_to_fun (group_norm E) (λ _, E → ℝ) := fun_like.has_coe_to_fun
410412

413+
@[simp, to_additive] lemma to_fun_eq_coe : p.to_fun = p := rfl
414+
411415
@[ext, to_additive] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q
412416

413417
@[to_additive] instance : partial_order (group_norm E) :=
Lines changed: 187 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,187 @@
1+
/-
2+
Copyright (c) 2022 María Inés de Frutos-Fernández. All rights reserved.
3+
Released under Apache 2.0 license as described in the file LICENSE.
4+
Authors: María Inés de Frutos-Fernández
5+
-/
6+
import analysis.seminorm
7+
8+
/-!
9+
# Seminorms and norms on rings
10+
11+
This file defines seminorms and norms on rings. These definitions are useful when one needs to
12+
consider multiple (semi)norms on a given ring.
13+
14+
## Main declarations
15+
16+
For a ring `R`:
17+
* `ring_seminorm`: A seminorm on a ring `R` is a function `f : R → ℝ` that preserves zero, takes
18+
nonnegative values, is subadditive and submultiplicative and such that `f (-x) = f x` for all
19+
`x ∈ R`.
20+
* `ring_norm`: A seminorm `f` is a norm if `f x = 0` if and only if `x = 0`.
21+
22+
## References
23+
24+
* [S. Bosch, U. Güntzer, R. Remmert, *Non-Archimedean Analysis*][bosch-guntzer-remmert]
25+
26+
## Tags
27+
ring_seminorm, ring_norm
28+
-/
29+
30+
set_option old_structure_cmd true
31+
32+
open_locale nnreal
33+
34+
variables {R S : Type*} (x y : R) (r : ℝ)
35+
36+
/-- A seminorm on a ring `R` is a function `f : R → ℝ` that preserves zero, takes nonnegative
37+
values, is subadditive and submultiplicative and such that `f (-x) = f x` for all `x ∈ R`. -/
38+
structure ring_seminorm (R : Type*) [non_unital_ring R]
39+
extends add_group_seminorm R :=
40+
(mul_le' : ∀ x y : R, to_fun (x * y) ≤ to_fun x * to_fun y)
41+
42+
/-- A function `f : R → ℝ` is a norm on a (nonunital) ring if it is a seminorm and `f x = 0`
43+
implies `x = 0`. -/
44+
structure ring_norm (R : Type*) [non_unital_ring R] extends add_group_norm R, ring_seminorm R
45+
46+
attribute [nolint doc_blame] ring_seminorm.to_add_group_seminorm ring_norm.to_add_group_norm
47+
ring_norm.to_ring_seminorm
48+
49+
/-- `ring_seminorm_class F α` states that `F` is a type of seminorms on the ring `α`.
50+
51+
You should extend this class when you extend `ring_seminorm`. -/
52+
class ring_seminorm_class (F : Type*) (α : out_param $ Type*) [non_unital_ring α]
53+
extends add_group_seminorm_class F α, submultiplicative_hom_class F α ℝ
54+
55+
/-- `ring_norm_class F α` states that `F` is a type of norms on the ring `α`.
56+
57+
You should extend this class when you extend `ring_norm`. -/
58+
class ring_norm_class (F : Type*) (α : out_param $ Type*) [non_unital_ring α]
59+
extends ring_seminorm_class F α, add_group_norm_class F α
60+
61+
namespace ring_seminorm
62+
63+
section non_unital_ring
64+
65+
variables [non_unital_ring R]
66+
67+
instance ring_seminorm_class : ring_seminorm_class (ring_seminorm R) R :=
68+
{ coe := λ f, f.to_fun,
69+
coe_injective' := λ f g h, by cases f; cases g; congr',
70+
map_zero := λ f, f.map_zero',
71+
map_add_le_add := λ f, f.add_le',
72+
map_mul_le_mul := λ f, f.mul_le',
73+
map_neg_eq_map := λ f, f.neg' }
74+
75+
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/
76+
instance : has_coe_to_fun (ring_seminorm R) (λ _, R → ℝ) := fun_like.has_coe_to_fun
77+
78+
@[simp] lemma to_fun_eq_coe (p : ring_seminorm R) : p.to_fun = p := rfl
79+
80+
@[ext] lemma ext {p q : ring_seminorm R} : (∀ x, p x = q x) → p = q := fun_like.ext p q
81+
82+
instance : has_zero (ring_seminorm R) :=
83+
⟨{ mul_le' := λ _ _, (zero_mul _).ge,
84+
..add_group_seminorm.has_zero.zero }⟩
85+
86+
lemma eq_zero_iff {p : ring_seminorm R} : p = 0 ↔ ∀ x, p x = 0 := fun_like.ext_iff
87+
lemma ne_zero_iff {p : ring_seminorm R} : p ≠ 0 ↔ ∃ x, p x ≠ 0 := by simp [eq_zero_iff]
88+
89+
instance : inhabited (ring_seminorm R) := ⟨0
90+
91+
/-- The trivial seminorm on a ring `R` is the `ring_seminorm` taking value `0` at `0` and `1` at
92+
every other element. -/
93+
instance [decidable_eq R] : has_one (ring_seminorm R) :=
94+
⟨{ mul_le' := λ x y, begin
95+
by_cases h : x * y = 0,
96+
{ refine (if_pos h).trans_le (mul_nonneg _ _);
97+
{ change _ ≤ ite _ _ _,
98+
split_ifs,
99+
exacts [le_rfl, zero_le_one] } },
100+
{ change ite _ _ _ ≤ ite _ _ _ * ite _ _ _,
101+
simp only [if_false, h, left_ne_zero_of_mul h, right_ne_zero_of_mul h, mul_one] }
102+
end,
103+
..(1 : add_group_seminorm R) }⟩
104+
105+
@[simp] lemma apply_one [decidable_eq R] (x : R) :
106+
(1 : ring_seminorm R) x = if x = 0 then 0 else 1 := rfl
107+
108+
end non_unital_ring
109+
110+
section ring
111+
112+
variables [ring R] (p : ring_seminorm R)
113+
114+
lemma seminorm_one_eq_one_iff_ne_zero (hp : p 11) :
115+
p 1 = 1 ↔ p ≠ 0 :=
116+
begin
117+
refine ⟨λ h, ne_zero_iff.mpr ⟨1, by {rw h, exact one_ne_zero}⟩, λ h, _⟩,
118+
obtain hp0 | hp0 := (map_nonneg p (1 : R)).eq_or_gt,
119+
{ cases h (ext $ λ x, (map_nonneg _ _).antisymm' _),
120+
simpa only [hp0, mul_one, mul_zero] using map_mul_le_mul p x 1},
121+
{ refine hp.antisymm ((le_mul_iff_one_le_left hp0).1 _),
122+
simpa only [one_mul] using map_mul_le_mul p (1 : R) _ }
123+
end
124+
125+
end ring
126+
127+
end ring_seminorm
128+
129+
/-- The norm of a `non_unital_semi_normed_ring` as a `ring_seminorm`. -/
130+
def norm_ring_seminorm (R : Type*) [non_unital_semi_normed_ring R] :
131+
ring_seminorm R :=
132+
{ to_fun := norm,
133+
mul_le' := norm_mul_le,
134+
..(norm_add_group_seminorm R) }
135+
136+
namespace ring_norm
137+
138+
variable [non_unital_ring R]
139+
140+
instance ring_norm_class : ring_norm_class (ring_norm R) R :=
141+
{ coe := λ f, f.to_fun,
142+
coe_injective' := λ f g h, by cases f; cases g; congr',
143+
map_zero := λ f, f.map_zero',
144+
map_add_le_add := λ f, f.add_le',
145+
map_mul_le_mul := λ f, f.mul_le',
146+
map_neg_eq_map := λ f, f.neg',
147+
eq_zero_of_map_eq_zero := λ f, f.eq_zero_of_map_eq_zero' }
148+
149+
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/
150+
instance : has_coe_to_fun (ring_norm R) (λ _, R → ℝ) := ⟨λ p, p.to_fun⟩
151+
152+
@[simp] lemma to_fun_eq_coe (p : ring_norm R) : p.to_fun = p := rfl
153+
154+
@[ext] lemma ext {p q : ring_norm R} : (∀ x, p x = q x) → p = q := fun_like.ext p q
155+
156+
variable (R)
157+
158+
/-- The trivial norm on a ring `R` is the `ring_norm` taking value `0` at `0` and `1` at every
159+
other element. -/
160+
instance [decidable_eq R] : has_one (ring_norm R) :=
161+
⟨{ ..(1 : ring_seminorm R), ..(1 : add_group_norm R) }⟩
162+
163+
@[simp] lemma apply_one [decidable_eq R] (x : R) : (1 : ring_norm R) x = if x = 0 then 0 else 1 :=
164+
rfl
165+
166+
instance [decidable_eq R] : inhabited (ring_norm R) := ⟨1
167+
168+
end ring_norm
169+
170+
/-- A nonzero ring seminorm on a field `K` is a ring norm. -/
171+
def ring_seminorm.to_ring_norm {K : Type*} [field K] (f : ring_seminorm K) (hnt : f ≠ 0) :
172+
ring_norm K :=
173+
{ eq_zero_of_map_eq_zero' := λ x hx,
174+
begin
175+
obtain ⟨c, hc⟩ := ring_seminorm.ne_zero_iff.mp hnt,
176+
by_contradiction hn0,
177+
have hc0 : f c = 0,
178+
{ rw [← mul_one c, ← mul_inv_cancel hn0, ← mul_assoc, mul_comm c, mul_assoc],
179+
exact le_antisymm (le_trans (map_mul_le_mul f _ _)
180+
(by rw [← ring_seminorm.to_fun_eq_coe, hx, zero_mul])) (map_nonneg f _) },
181+
exact hc hc0,
182+
end,
183+
..f }
184+
185+
/-- The norm of a normed_ring as a ring_norm. -/
186+
@[simps] def norm_ring_norm (R : Type*) [non_unital_normed_ring R] : ring_norm R :=
187+
{ ..norm_add_group_norm R, ..norm_ring_seminorm R }

0 commit comments

Comments
 (0)