Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 9998bee

Browse files
committed
chore(measure_theory/*): remove some measurable f arguments (#3902)
1 parent 4c04f0b commit 9998bee

File tree

3 files changed

+24
-25
lines changed

3 files changed

+24
-25
lines changed

src/measure_theory/bochner_integration.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1266,10 +1266,10 @@ calc ∥∫ x, f x ∂μ∥ ≤ ∫ x, C ∂μ : norm_integral_le_of_norm_le mea
12661266

12671267
variable {ν : measure α}
12681268

1269-
lemma integral_add_measure {f : α → E} (hfm : measurable f) (hμ : integrable f μ)
1270-
(hν : integrable f ν) :
1269+
lemma integral_add_measure {f : α → E} (hμ : integrable f μ) (hν : integrable f ν) :
12711270
∫ x, f x ∂(μ + ν) = ∫ x, f x ∂μ + ∫ x, f x ∂ν :=
12721271
begin
1272+
by_cases hfm : measurable f; [skip, by simp only [integral_non_measurable hfm, zero_add]],
12731273
have hfi := hμ.add_measure hν,
12741274
rcases simple_func_sequence_tendsto' hfm hfi with ⟨F, hFi, hFt⟩,
12751275
have hFiμ : ∀ i, integrable (F i) μ := λ i, (hFi i).left_of_add_measure,

src/measure_theory/interval_integral.lean

Lines changed: 17 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -335,8 +335,8 @@ section order_closed_topology
335335

336336
variables [order_closed_topology α]
337337

338-
lemma integral_add_adjacent_intervals_cancel (hfm : measurable f)
339-
(hab : interval_integrable f μ a b) (hbc : interval_integrable f μ b c) :
338+
lemma integral_add_adjacent_intervals_cancel (hab : interval_integrable f μ a b)
339+
(hbc : interval_integrable f μ b c) :
340340
∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ + ∫ x in c..a, f x ∂μ = 0 :=
341341
begin
342342
have hac := hab.trans hbc,
@@ -349,42 +349,41 @@ begin
349349
Ioc_disjoint_Ioc_same.symm, hab.1, hab.2, hbc.1, hbc.2, hac.1, hac.2] }
350350
end
351351

352-
lemma integral_add_adjacent_intervals (hfm : measurable f) (hab : interval_integrable f μ a b)
352+
lemma integral_add_adjacent_intervals (hab : interval_integrable f μ a b)
353353
(hbc : interval_integrable f μ b c) :
354354
∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ = ∫ x in a..c, f x ∂μ :=
355-
by rw [← add_neg_eq_zero, ← integral_symm, integral_add_adjacent_intervals_cancel hfm hab hbc]
355+
by rw [← add_neg_eq_zero, ← integral_symm, integral_add_adjacent_intervals_cancel hab hbc]
356356

357-
lemma integral_interval_sub_left (hfm : measurable f) (hab : interval_integrable f μ a b)
357+
lemma integral_interval_sub_left (hab : interval_integrable f μ a b)
358358
(hac : interval_integrable f μ a c) :
359359
∫ x in a..b, f x ∂μ - ∫ x in a..c, f x ∂μ = ∫ x in c..b, f x ∂μ :=
360-
sub_eq_of_eq_add' $ eq.symm $ integral_add_adjacent_intervals hfm hac (hac.symm.trans hab)
360+
sub_eq_of_eq_add' $ eq.symm $ integral_add_adjacent_intervals hac (hac.symm.trans hab)
361361

362-
lemma integral_interval_add_interval_comm (hfm : measurable f) (hab : interval_integrable f μ a b)
362+
lemma integral_interval_add_interval_comm (hab : interval_integrable f μ a b)
363363
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
364364
∫ x in a..b, f x ∂μ + ∫ x in c..d, f x ∂μ = ∫ x in a..d, f x ∂μ + ∫ x in c..b, f x ∂μ :=
365-
by rw [← integral_add_adjacent_intervals hfm hac hcd, add_assoc, add_left_comm,
366-
integral_add_adjacent_intervals hfm hac (hac.symm.trans hab), add_comm]
365+
by rw [← integral_add_adjacent_intervals hac hcd, add_assoc, add_left_comm,
366+
integral_add_adjacent_intervals hac (hac.symm.trans hab), add_comm]
367367

368-
lemma integral_interval_sub_interval_comm (hfm : measurable f) (hab : interval_integrable f μ a b)
368+
lemma integral_interval_sub_interval_comm (hab : interval_integrable f μ a b)
369369
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
370370
∫ x in a..b, f x ∂μ - ∫ x in c..d, f x ∂μ = ∫ x in a..c, f x ∂μ - ∫ x in b..d, f x ∂μ :=
371371
by simp only [sub_eq_add_neg, ← integral_symm,
372-
integral_interval_add_interval_comm hfm hab hcd.symm (hac.trans hcd)]
372+
integral_interval_add_interval_comm hab hcd.symm (hac.trans hcd)]
373373

374-
lemma integral_interval_sub_interval_comm' (hfm : measurable f) (hab : interval_integrable f μ a b)
374+
lemma integral_interval_sub_interval_comm' (hab : interval_integrable f μ a b)
375375
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
376376
∫ x in a..b, f x ∂μ - ∫ x in c..d, f x ∂μ = ∫ x in d..b, f x ∂μ - ∫ x in c..a, f x ∂μ :=
377-
by rw [integral_interval_sub_interval_comm hfm hab hcd hac, integral_symm b d, integral_symm a c,
377+
by rw [integral_interval_sub_interval_comm hab hcd hac, integral_symm b d, integral_symm a c,
378378
sub_neg_eq_add, sub_eq_neg_add]
379379

380-
lemma integral_Iic_sub_Iic (hfm : measurable f) (ha : integrable_on f (Iic a) μ)
381-
(hb : integrable_on f (Iic b) μ) :
380+
lemma integral_Iic_sub_Iic (ha : integrable_on f (Iic a) μ) (hb : integrable_on f (Iic b) μ) :
382381
∫ x in Iic b, f x ∂μ - ∫ x in Iic a, f x ∂μ = ∫ x in a..b, f x ∂μ :=
383382
begin
384383
wlog hab : a ≤ b using [a b] tactic.skip,
385384
{ rw [sub_eq_iff_eq_add', integral_of_le hab, ← integral_union (Iic_disjoint_Ioc (le_refl _)),
386385
Iic_union_Ioc_eq_Iic hab],
387-
exacts [is_measurable_Iic, is_measurable_Ioc, hfm, ha, hb.mono_set (λ _, and.right)] },
386+
exacts [is_measurable_Iic, is_measurable_Ioc, ha, hb.mono_set (λ _, and.right)] },
388387
{ intros ha hb,
389388
rw [integral_symm, ← this hb ha, neg_sub] }
390389
end
@@ -394,7 +393,7 @@ lemma integral_const_of_cdf [finite_measure μ] (c : E) :
394393
∫ x in a..b, c ∂μ = ((μ (Iic b)).to_real - (μ (Iic a)).to_real) • c :=
395394
begin
396395
simp only [sub_smul, ← set_integral_const],
397-
refine (integral_Iic_sub_Iic measurable_const _ _).symm;
396+
refine (integral_Iic_sub_Iic _ _).symm;
398397
simp only [integrable_on_const, measure_lt_top, or_true]
399398
end
400399

@@ -661,7 +660,7 @@ begin
661660
(tendsto_const_pure.mono_right FTC_filter.pure_le) hub,
662661
filter_upwards [A, A', B, B'], simp only [mem_set_of_eq],
663662
intros t ua_va a_ua ub_vb b_ub,
664-
rw [← integral_interval_sub_interval_comm' hfm],
663+
rw [← integral_interval_sub_interval_comm'],
665664
{ dsimp only [], abel },
666665
exacts [ub_vb, ua_va, b_ub.symm.trans $ hab.symm.trans a_ua]
667666
end

src/measure_theory/set_integral.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -261,17 +261,17 @@ variables [measurable_space E] [borel_space E] [complete_space E] [second_counta
261261
[normed_space ℝ E]
262262

263263
lemma integral_union (hst : disjoint s t) (hs : is_measurable s) (ht : is_measurable t)
264-
(hfm : measurable f) (hfs : integrable_on f s μ) (hft : integrable_on f t μ) :
264+
(hfs : integrable_on f s μ) (hft : integrable_on f t μ) :
265265
∫ x in s ∪ t, f x ∂μ = ∫ x in s, f x ∂μ + ∫ x in t, f x ∂μ :=
266-
by simp only [integrable_on, measure.restrict_union hst hs ht, integral_add_measure hfm hfs hft]
266+
by simp only [integrable_on, measure.restrict_union hst hs ht, integral_add_measure hfs hft]
267267

268268
lemma integral_empty : ∫ x in ∅, f x ∂μ = 0 := by rw [measure.restrict_empty, integral_zero_measure]
269269

270270
lemma integral_univ : ∫ x in univ, f x ∂μ = ∫ x, f x ∂μ := by rw [measure.restrict_univ]
271271

272-
lemma integral_add_compl (hs : is_measurable s) (hfm : measurable f) (hfi : integrable f μ) :
272+
lemma integral_add_compl (hs : is_measurable s) (hfi : integrable f μ) :
273273
∫ x in s, f x ∂μ + ∫ x in sᶜ, f x ∂μ = ∫ x, f x ∂μ :=
274-
by rw [← integral_union (disjoint_compl s) hs hs.compl hfm hfi.integrable_on hfi.integrable_on,
274+
by rw [← integral_union (disjoint_compl s) hs hs.compl hfi.integrable_on hfi.integrable_on,
275275
union_compl_self, integral_univ]
276276

277277
/-- For a measurable function `f` and a measurable set `s`, the integral of `indicator s f`
@@ -281,7 +281,7 @@ lemma integral_indicator (hfm : measurable f) (hs : is_measurable s) :
281281
have hfms : measurable (indicator s f) := hfm.indicator hs,
282282
if hfi : integrable_on f s μ then
283283
calc ∫ x, indicator s f x ∂μ = ∫ x in s, indicator s f x ∂μ + ∫ x in sᶜ, indicator s f x ∂μ :
284-
(integral_add_compl hs hfms (hfi.indicator hs)).symm
284+
(integral_add_compl hs (hfi.indicator hs)).symm
285285
... = ∫ x in s, f x ∂μ + ∫ x in sᶜ, 0 ∂μ :
286286
congr_arg2 (+) (integral_congr_ae hfms hfm (indicator_ae_eq_restrict hs))
287287
(integral_congr_ae hfms measurable_const (indicator_ae_eq_restrict_compl hs))

0 commit comments

Comments
 (0)