@@ -335,8 +335,8 @@ section order_closed_topology
335
335
336
336
variables [order_closed_topology α]
337
337
338
- lemma integral_add_adjacent_intervals_cancel (hfm : measurable f )
339
- (hab : interval_integrable f μ a b) ( hbc : interval_integrable f μ b c) :
338
+ lemma integral_add_adjacent_intervals_cancel (hab : interval_integrable f μ a b )
339
+ (hbc : interval_integrable f μ b c) :
340
340
∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ + ∫ x in c..a, f x ∂μ = 0 :=
341
341
begin
342
342
have hac := hab.trans hbc,
@@ -349,42 +349,41 @@ begin
349
349
Ioc_disjoint_Ioc_same.symm, hab.1 , hab.2 , hbc.1 , hbc.2 , hac.1 , hac.2 ] }
350
350
end
351
351
352
- lemma integral_add_adjacent_intervals (hfm : measurable f) ( hab : interval_integrable f μ a b)
352
+ lemma integral_add_adjacent_intervals (hab : interval_integrable f μ a b)
353
353
(hbc : interval_integrable f μ b c) :
354
354
∫ x in a..b, f x ∂μ + ∫ x in b..c, f x ∂μ = ∫ x in a..c, f x ∂μ :=
355
- by rw [← add_neg_eq_zero, ← integral_symm, integral_add_adjacent_intervals_cancel hfm hab hbc]
355
+ by rw [← add_neg_eq_zero, ← integral_symm, integral_add_adjacent_intervals_cancel hab hbc]
356
356
357
- lemma integral_interval_sub_left (hfm : measurable f) ( hab : interval_integrable f μ a b)
357
+ lemma integral_interval_sub_left (hab : interval_integrable f μ a b)
358
358
(hac : interval_integrable f μ a c) :
359
359
∫ x in a..b, f x ∂μ - ∫ x in a..c, f x ∂μ = ∫ x in c..b, f x ∂μ :=
360
- sub_eq_of_eq_add' $ eq.symm $ integral_add_adjacent_intervals hfm hac (hac.symm.trans hab)
360
+ sub_eq_of_eq_add' $ eq.symm $ integral_add_adjacent_intervals hac (hac.symm.trans hab)
361
361
362
- lemma integral_interval_add_interval_comm (hfm : measurable f) ( hab : interval_integrable f μ a b)
362
+ lemma integral_interval_add_interval_comm (hab : interval_integrable f μ a b)
363
363
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
364
364
∫ x in a..b, f x ∂μ + ∫ x in c..d, f x ∂μ = ∫ x in a..d, f x ∂μ + ∫ x in c..b, f x ∂μ :=
365
- by rw [← integral_add_adjacent_intervals hfm hac hcd, add_assoc, add_left_comm,
366
- integral_add_adjacent_intervals hfm hac (hac.symm.trans hab), add_comm]
365
+ by rw [← integral_add_adjacent_intervals hac hcd, add_assoc, add_left_comm,
366
+ integral_add_adjacent_intervals hac (hac.symm.trans hab), add_comm]
367
367
368
- lemma integral_interval_sub_interval_comm (hfm : measurable f) ( hab : interval_integrable f μ a b)
368
+ lemma integral_interval_sub_interval_comm (hab : interval_integrable f μ a b)
369
369
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
370
370
∫ x in a..b, f x ∂μ - ∫ x in c..d, f x ∂μ = ∫ x in a..c, f x ∂μ - ∫ x in b..d, f x ∂μ :=
371
371
by simp only [sub_eq_add_neg, ← integral_symm,
372
- integral_interval_add_interval_comm hfm hab hcd.symm (hac.trans hcd)]
372
+ integral_interval_add_interval_comm hab hcd.symm (hac.trans hcd)]
373
373
374
- lemma integral_interval_sub_interval_comm' (hfm : measurable f) ( hab : interval_integrable f μ a b)
374
+ lemma integral_interval_sub_interval_comm' (hab : interval_integrable f μ a b)
375
375
(hcd : interval_integrable f μ c d) (hac : interval_integrable f μ a c) :
376
376
∫ x in a..b, f x ∂μ - ∫ x in c..d, f x ∂μ = ∫ x in d..b, f x ∂μ - ∫ x in c..a, f x ∂μ :=
377
- by rw [integral_interval_sub_interval_comm hfm hab hcd hac, integral_symm b d, integral_symm a c,
377
+ by rw [integral_interval_sub_interval_comm hab hcd hac, integral_symm b d, integral_symm a c,
378
378
sub_neg_eq_add, sub_eq_neg_add]
379
379
380
- lemma integral_Iic_sub_Iic (hfm : measurable f) (ha : integrable_on f (Iic a) μ)
381
- (hb : integrable_on f (Iic b) μ) :
380
+ lemma integral_Iic_sub_Iic (ha : integrable_on f (Iic a) μ) (hb : integrable_on f (Iic b) μ) :
382
381
∫ x in Iic b, f x ∂μ - ∫ x in Iic a, f x ∂μ = ∫ x in a..b, f x ∂μ :=
383
382
begin
384
383
wlog hab : a ≤ b using [a b] tactic.skip,
385
384
{ rw [sub_eq_iff_eq_add', integral_of_le hab, ← integral_union (Iic_disjoint_Ioc (le_refl _)),
386
385
Iic_union_Ioc_eq_Iic hab],
387
- exacts [is_measurable_Iic, is_measurable_Ioc, hfm, ha, hb.mono_set (λ _, and.right)] },
386
+ exacts [is_measurable_Iic, is_measurable_Ioc, ha, hb.mono_set (λ _, and.right)] },
388
387
{ intros ha hb,
389
388
rw [integral_symm, ← this hb ha, neg_sub] }
390
389
end
@@ -394,7 +393,7 @@ lemma integral_const_of_cdf [finite_measure μ] (c : E) :
394
393
∫ x in a..b, c ∂μ = ((μ (Iic b)).to_real - (μ (Iic a)).to_real) • c :=
395
394
begin
396
395
simp only [sub_smul, ← set_integral_const],
397
- refine (integral_Iic_sub_Iic measurable_const _ _).symm;
396
+ refine (integral_Iic_sub_Iic _ _).symm;
398
397
simp only [integrable_on_const, measure_lt_top, or_true]
399
398
end
400
399
@@ -661,7 +660,7 @@ begin
661
660
(tendsto_const_pure.mono_right FTC_filter.pure_le) hub,
662
661
filter_upwards [A, A', B, B'], simp only [mem_set_of_eq],
663
662
intros t ua_va a_ua ub_vb b_ub,
664
- rw [← integral_interval_sub_interval_comm' hfm ],
663
+ rw [← integral_interval_sub_interval_comm'],
665
664
{ dsimp only [], abel },
666
665
exacts [ub_vb, ua_va, b_ub.symm.trans $ hab.symm.trans a_ua]
667
666
end
0 commit comments