@@ -1960,14 +1960,26 @@ lemma pairwise_on_eq_iff_exists_eq [nonempty β] (s : set α) (f : α → β) :
1960
1960
(pairwise_on s (λ x y, f x = f y)) ↔ ∃ z, ∀ x ∈ s, f x = z :=
1961
1961
pairwise_on_iff_exists_forall s f
1962
1962
1963
+ lemma pairwise_on_insert {α} {s : set α} {a : α} {r : α → α → Prop } :
1964
+ (insert a s).pairwise_on r ↔ s.pairwise_on r ∧ ∀ b ∈ s, a ≠ b → r a b ∧ r b a :=
1965
+ begin
1966
+ simp only [pairwise_on, ball_insert_iff, forall_and_distrib, true_and, forall_false_left,
1967
+ eq_self_iff_true, not_true, ne.def, @eq_comm _ a],
1968
+ exact ⟨λ H, ⟨H.2 .2 , H.2 .1 , H.1 ⟩, λ H, ⟨H.2 .2 , H.2 .1 , H.1 ⟩⟩
1969
+ end
1970
+
1963
1971
lemma pairwise_on_insert_of_symmetric {α} {s : set α} {a : α} {r : α → α → Prop }
1964
1972
(hr : symmetric r) :
1965
1973
(insert a s).pairwise_on r ↔ s.pairwise_on r ∧ ∀ b ∈ s, a ≠ b → r a b :=
1966
- begin
1967
- simp only [pairwise_on, ball_insert_iff, true_and, forall_false_left, eq_self_iff_true, not_true,
1968
- ne.def, forall_and_distrib, hr.iff a, @eq_comm _ a],
1969
- exact ⟨λ h, ⟨h.2 .2 , h.2 .1 ⟩, λ h, ⟨h.2 , h.2 , h.1 ⟩⟩
1970
- end
1974
+ by simp only [pairwise_on_insert, hr.iff a, and_self]
1975
+
1976
+ lemma pairwise_on_pair {r : α → α → Prop } {x y : α} :
1977
+ pairwise_on {x, y} r ↔ (x ≠ y → r x y ∧ r y x) :=
1978
+ by simp [pairwise_on_insert]
1979
+
1980
+ lemma pairwise_on_pair_of_symmetric {r : α → α → Prop } {x y : α} (hr : symmetric r) :
1981
+ pairwise_on {x, y} r ↔ (x ≠ y → r x y) :=
1982
+ by simp [pairwise_on_insert_of_symmetric hr]
1971
1983
1972
1984
end set
1973
1985
0 commit comments