This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +17
-0
lines changed Expand file tree Collapse file tree 1 file changed +17
-0
lines changed Original file line number Diff line number Diff line change @@ -928,6 +928,23 @@ lemma lt_pow_self {p : ℕ} (h : 1 < p) : ∀ n : ℕ, n < p ^ n
928
928
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _
929
929
... ≤ p ^ (n+1 ) : pow_lt_pow_succ h _
930
930
931
+ lemma lt_two_pow (n : ℕ) : n < 2 ^n :=
932
+ lt_pow_self dec_trivial n
933
+
934
+ lemma one_le_pow (n m : ℕ) (h : 0 < m) : 1 ≤ m^n :=
935
+ one_pow n ▸ pow_le_pow_of_le_left h n
936
+ lemma one_le_pow' (n m : ℕ) : 1 ≤ (m+1 )^n := one_le_pow n (m+1 ) (succ_pos m)
937
+
938
+ lemma one_le_two_pow (n : ℕ) : 1 ≤ 2 ^n := one_le_pow n 2 dec_trivial
939
+
940
+ lemma one_lt_pow (n m : ℕ) (h₀ : 0 < n) (h₁ : 1 < m) : 1 < m^n :=
941
+ one_pow n ▸ pow_lt_pow_of_lt_left h₁ h₀
942
+ lemma one_lt_pow' (n m : ℕ) : 1 < (m+2 )^(n+1 ) :=
943
+ one_lt_pow (n+1 ) (m+2 ) (succ_pos n) (nat.lt_of_sub_eq_succ rfl)
944
+
945
+ lemma one_lt_two_pow (n : ℕ) (h₀ : 0 < n) : 1 < 2 ^n := one_lt_pow n 2 h₀ dec_trivial
946
+ lemma one_lt_two_pow' (n : ℕ) : 1 < 2 ^(n+1 ) := one_lt_pow (n+1 ) 2 (succ_pos n) dec_trivial
947
+
931
948
lemma pow_right_strict_mono {x : ℕ} (k : 2 ≤ x) : strict_mono (nat.pow x) :=
932
949
λ _ _, pow_lt_pow_of_lt_right k
933
950
You can’t perform that action at this time.
0 commit comments