Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 9bb9956

Browse files
committed
feat(data/nat/basic): inequalities (#2801)
Adds some simple inequalities about `nat.pow`.
1 parent 4b616e6 commit 9bb9956

File tree

1 file changed

+17
-0
lines changed

1 file changed

+17
-0
lines changed

src/data/nat/basic.lean

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -928,6 +928,23 @@ lemma lt_pow_self {p : ℕ} (h : 1 < p) : ∀ n : ℕ, n < p ^ n
928928
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _
929929
... ≤ p ^ (n+1) : pow_lt_pow_succ h _
930930

931+
lemma lt_two_pow (n : ℕ) : n < 2^n :=
932+
lt_pow_self dec_trivial n
933+
934+
lemma one_le_pow (n m : ℕ) (h : 0 < m) : 1 ≤ m^n :=
935+
one_pow n ▸ pow_le_pow_of_le_left h n
936+
lemma one_le_pow' (n m : ℕ) : 1 ≤ (m+1)^n := one_le_pow n (m+1) (succ_pos m)
937+
938+
lemma one_le_two_pow (n : ℕ) : 12^n := one_le_pow n 2 dec_trivial
939+
940+
lemma one_lt_pow (n m : ℕ) (h₀ : 0 < n) (h₁ : 1 < m) : 1 < m^n :=
941+
one_pow n ▸ pow_lt_pow_of_lt_left h₁ h₀
942+
lemma one_lt_pow' (n m : ℕ) : 1 < (m+2)^(n+1) :=
943+
one_lt_pow (n+1) (m+2) (succ_pos n) (nat.lt_of_sub_eq_succ rfl)
944+
945+
lemma one_lt_two_pow (n : ℕ) (h₀ : 0 < n) : 1 < 2^n := one_lt_pow n 2 h₀ dec_trivial
946+
lemma one_lt_two_pow' (n : ℕ) : 1 < 2^(n+1) := one_lt_pow (n+1) 2 (succ_pos n) dec_trivial
947+
931948
lemma pow_right_strict_mono {x : ℕ} (k : 2 ≤ x) : strict_mono (nat.pow x) :=
932949
λ _ _, pow_lt_pow_of_lt_right k
933950

0 commit comments

Comments
 (0)