This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +14
-0
lines changed Expand file tree Collapse file tree 2 files changed +14
-0
lines changed Original file line number Diff line number Diff line change @@ -1413,6 +1413,11 @@ instance pi_Lp.inner_product_space {ι : Type*} [fintype ι] (f : ι → Type*)
1413
1413
⟪x, y⟫ = ∑ i, ⟪x i, y i⟫ :=
1414
1414
rfl
1415
1415
1416
+ lemma pi_Lp.norm_eq_of_L2 {ι : Type *} [fintype ι] {f : ι → Type *}
1417
+ [Π i, inner_product_space 𝕜 (f i)] (x : pi_Lp 2 one_le_two f) :
1418
+ ∥x∥ = sqrt (∑ (i : ι), ∥x i∥ ^ 2 ) :=
1419
+ by { rw [pi_Lp.norm_eq_of_nat 2 ]; simp [sqrt_eq_rpow] }
1420
+
1416
1421
/-- A field `𝕜` satisfying `is_R_or_C` is itself a `𝕜`-inner product space. -/
1417
1422
instance is_R_or_C.inner_product_space : inner_product_space 𝕜 𝕜 :=
1418
1423
{ inner := (λ x y, (conj x) * y),
@@ -1430,6 +1435,10 @@ space use `euclidean_space 𝕜 (fin n)`. -/
1430
1435
def euclidean_space (𝕜 : Type *) [is_R_or_C 𝕜]
1431
1436
(n : Type *) [fintype n] : Type * := pi_Lp 2 one_le_two (λ (i : n), 𝕜)
1432
1437
1438
+ lemma euclidean_space.norm_eq {𝕜 : Type *} [is_R_or_C 𝕜] {n : Type *} [fintype n]
1439
+ (x : euclidean_space 𝕜 n) : ∥x∥ = real.sqrt (∑ (i : n), ∥x i∥ ^ 2 ) :=
1440
+ pi_Lp.norm_eq_of_L2 x
1441
+
1433
1442
/-! ### Inner product space structure on subspaces -/
1434
1443
1435
1444
/-- Induced inner product on a submodule. -/
Original file line number Diff line number Diff line change @@ -229,6 +229,11 @@ lemma norm_eq {p : ℝ} {hp : 1 ≤ p} {α : ι → Type*}
229
229
[∀i, normed_group (α i)] (f : pi_Lp p hp α) :
230
230
∥f∥ = (∑ (i : ι), ∥f i∥ ^ p) ^ (1 /p) := rfl
231
231
232
+ lemma norm_eq_of_nat {p : ℝ} {hp : 1 ≤ p} {α : ι → Type *}
233
+ [∀i, normed_group (α i)] (n : ℕ) (h : p = n) (f : pi_Lp p hp α) :
234
+ ∥f∥ = (∑ (i : ι), ∥f i∥ ^ n) ^ (1 /(n : ℝ)) :=
235
+ by simp [norm_eq, h, real.sqrt_eq_rpow, ←real.rpow_nat_cast]
236
+
232
237
variables (𝕜 : Type *) [normed_field 𝕜]
233
238
234
239
/-- The product of finitely many normed spaces is a normed space, with the `L^p` norm. -/
You can’t perform that action at this time.
0 commit comments