Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a10bc3d

Browse files
committed
feat(normed_space/inner_product): euclidean_space.norm_eq (#6744)
Co-authored-by: Yakov Pechersky <pechersky@users.noreply.github.com>
1 parent e1ff2df commit a10bc3d

File tree

2 files changed

+14
-0
lines changed

2 files changed

+14
-0
lines changed

src/analysis/normed_space/inner_product.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1413,6 +1413,11 @@ instance pi_Lp.inner_product_space {ι : Type*} [fintype ι] (f : ι → Type*)
14131413
⟪x, y⟫ = ∑ i, ⟪x i, y i⟫ :=
14141414
rfl
14151415

1416+
lemma pi_Lp.norm_eq_of_L2 {ι : Type*} [fintype ι] {f : ι → Type*}
1417+
[Π i, inner_product_space 𝕜 (f i)] (x : pi_Lp 2 one_le_two f) :
1418+
∥x∥ = sqrt (∑ (i : ι), ∥x i∥ ^ 2) :=
1419+
by { rw [pi_Lp.norm_eq_of_nat 2]; simp [sqrt_eq_rpow] }
1420+
14161421
/-- A field `𝕜` satisfying `is_R_or_C` is itself a `𝕜`-inner product space. -/
14171422
instance is_R_or_C.inner_product_space : inner_product_space 𝕜 𝕜 :=
14181423
{ inner := (λ x y, (conj x) * y),
@@ -1430,6 +1435,10 @@ space use `euclidean_space 𝕜 (fin n)`. -/
14301435
def euclidean_space (𝕜 : Type*) [is_R_or_C 𝕜]
14311436
(n : Type*) [fintype n] : Type* := pi_Lp 2 one_le_two (λ (i : n), 𝕜)
14321437

1438+
lemma euclidean_space.norm_eq {𝕜 : Type*} [is_R_or_C 𝕜] {n : Type*} [fintype n]
1439+
(x : euclidean_space 𝕜 n) : ∥x∥ = real.sqrt (∑ (i : n), ∥x i∥ ^ 2) :=
1440+
pi_Lp.norm_eq_of_L2 x
1441+
14331442
/-! ### Inner product space structure on subspaces -/
14341443

14351444
/-- Induced inner product on a submodule. -/

src/topology/metric_space/pi_Lp.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -229,6 +229,11 @@ lemma norm_eq {p : ℝ} {hp : 1 ≤ p} {α : ι → Type*}
229229
[∀i, normed_group (α i)] (f : pi_Lp p hp α) :
230230
∥f∥ = (∑ (i : ι), ∥f i∥ ^ p) ^ (1/p) := rfl
231231

232+
lemma norm_eq_of_nat {p : ℝ} {hp : 1 ≤ p} {α : ι → Type*}
233+
[∀i, normed_group (α i)] (n : ℕ) (h : p = n) (f : pi_Lp p hp α) :
234+
∥f∥ = (∑ (i : ι), ∥f i∥ ^ n) ^ (1/(n : ℝ)) :=
235+
by simp [norm_eq, h, real.sqrt_eq_rpow, ←real.rpow_nat_cast]
236+
232237
variables (𝕜 : Type*) [normed_field 𝕜]
233238

234239
/-- The product of finitely many normed spaces is a normed space, with the `L^p` norm. -/

0 commit comments

Comments
 (0)