@@ -40,31 +40,31 @@ open measure_theory measurable_space
40
40
41
41
namespace probability_theory
42
42
43
- variables {α : Type *} [measurable_space α ]
43
+ variables {Ω : Type *} [measurable_space Ω ]
44
44
45
45
/-- Given a set `s`, `cond_count s` is the counting measure conditioned on `s`. In particular,
46
46
`cond_count s t` is the proportion of `s` that is contained in `t`.
47
47
48
48
This is a probability measure when `s` is finite and nonempty and is given by
49
49
`probability_theory.cond_count_is_probability_measure`. -/
50
- def cond_count (s : set α ) : measure α := measure.count[|s]
50
+ def cond_count (s : set Ω ) : measure Ω := measure.count[|s]
51
51
52
- @[simp] lemma cond_count_empty_meas : (cond_count ∅ : measure α ) = 0 :=
52
+ @[simp] lemma cond_count_empty_meas : (cond_count ∅ : measure Ω ) = 0 :=
53
53
by simp [cond_count]
54
54
55
- lemma cond_count_empty {s : set α } : cond_count s ∅ = 0 :=
55
+ lemma cond_count_empty {s : set Ω } : cond_count s ∅ = 0 :=
56
56
by simp
57
57
58
- lemma finite_of_cond_count_ne_zero {s t : set α } (h : cond_count s t ≠ 0 ) :
58
+ lemma finite_of_cond_count_ne_zero {s t : set Ω } (h : cond_count s t ≠ 0 ) :
59
59
s.finite :=
60
60
begin
61
61
by_contra hs',
62
62
simpa [cond_count, cond, measure.count_apply_infinite hs'] using h,
63
63
end
64
64
65
- variables [measurable_singleton_class α ]
65
+ variables [measurable_singleton_class Ω ]
66
66
67
- lemma cond_count_is_probability_measure {s : set α } (hs : s.finite) (hs' : s.nonempty) :
67
+ lemma cond_count_is_probability_measure {s : set Ω } (hs : s.finite) (hs' : s.nonempty) :
68
68
is_probability_measure (cond_count s) :=
69
69
{ measure_univ :=
70
70
begin
@@ -73,17 +73,17 @@ lemma cond_count_is_probability_measure {s : set α} (hs : s.finite) (hs' : s.no
73
73
{ exact (measure.count_apply_lt_top.2 hs).ne }
74
74
end }
75
75
76
- lemma cond_count_singleton (a : α ) (t : set α ) [decidable (a ∈ t)] :
77
- cond_count {a } t = if a ∈ t then 1 else 0 :=
76
+ lemma cond_count_singleton (ω : Ω ) (t : set Ω ) [decidable (ω ∈ t)] :
77
+ cond_count {ω } t = if ω ∈ t then 1 else 0 :=
78
78
begin
79
- rw [cond_count, cond_apply _ (measurable_set_singleton a ), measure.count_singleton,
79
+ rw [cond_count, cond_apply _ (measurable_set_singleton ω ), measure.count_singleton,
80
80
ennreal.inv_one, one_mul],
81
81
split_ifs,
82
- { rw [(by simpa : ({a } : set α ) ∩ t = {a }), measure.count_singleton] },
83
- { rw [(by simpa : ({a } : set α ) ∩ t = ∅), measure.count_empty] },
82
+ { rw [(by simpa : ({ω } : set Ω ) ∩ t = {ω }), measure.count_singleton] },
83
+ { rw [(by simpa : ({ω } : set Ω ) ∩ t = ∅), measure.count_empty] },
84
84
end
85
85
86
- variables {s t u : set α }
86
+ variables {s t u : set Ω }
87
87
88
88
lemma cond_count_inter_self (hs : s.finite):
89
89
cond_count s (s ∩ t) = cond_count s t :=
@@ -159,7 +159,7 @@ begin
159
159
exacts [htu.mono inf_le_right inf_le_right, (hs.inter_of_left _).measurable_set],
160
160
end
161
161
162
- lemma cond_count_compl (t : set α ) (hs : s.finite) (hs' : s.nonempty) :
162
+ lemma cond_count_compl (t : set Ω ) (hs : s.finite) (hs' : s.nonempty) :
163
163
cond_count s t + cond_count s tᶜ = 1 :=
164
164
begin
165
165
rw [← cond_count_union hs disjoint_compl_right, set.union_compl_self,
@@ -190,7 +190,7 @@ begin
190
190
end
191
191
192
192
/-- A version of the law of total probability for counting probabilites. -/
193
- lemma cond_count_add_compl_eq (u t : set α ) (hs : s.finite) :
193
+ lemma cond_count_add_compl_eq (u t : set Ω ) (hs : s.finite) :
194
194
cond_count (s ∩ u) t * cond_count s u + cond_count (s ∩ uᶜ) t * cond_count s uᶜ =
195
195
cond_count s t :=
196
196
begin
0 commit comments