Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a20f378

Browse files
kim-emmergify[bot]
andauthored
chore(category_theory/images): fix some minor problems (#2182)
* chore(category_theory/images): fix some minor problems * minor * oops, misplaced comment Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
1 parent 4bc32ae commit a20f378

File tree

1 file changed

+3
-4
lines changed

1 file changed

+3
-4
lines changed

src/category_theory/limits/shapes/images.lean

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -126,13 +126,12 @@ def image : C := (image.mono_factorisation f).I
126126
def image.ι : image f ⟶ Y := (image.mono_factorisation f).m
127127
@[simp] lemma image.as_ι : (image.mono_factorisation f).m = image.ι f := rfl
128128
instance : mono (image.ι f) := (image.mono_factorisation f).m_mono
129-
/-- The 'corestriction' morphism from the source to the image. -/
130-
def image.c : X ⟶ image f := (image.mono_factorisation f).e
131-
@[simp] lemma image.as_c : (image.mono_factorisation f).e = image.c f := rfl
132-
@[simp] lemma image.c_ι : image.c f ≫ image.ι f = f := by erw (image.mono_factorisation f).fac
133129

134130
/-- The map from the source to the image of a morphism. -/
135131
def factor_thru_image : X ⟶ image f := (image.mono_factorisation f).e
132+
/-- Rewrite in terms of the `factor_thru_image` interface. -/
133+
@[simp]
134+
lemma as_factor_thru_image : (image.mono_factorisation f).e = factor_thru_image f := rfl
136135
@[simp, reassoc]
137136
lemma image.fac : factor_thru_image f ≫ image.ι f = f := (image.mono_factorisation f).fac'
138137

0 commit comments

Comments
 (0)