@@ -1259,17 +1259,38 @@ lemma derived_series_def (k : ℕ) :
1259
1259
1260
1260
variables {R L}
1261
1261
1262
- lemma derived_series_of_ideal_succ_le (k : ℕ) :
1263
- derived_series_of_ideal R L I (k + 1 ) ≤ derived_series_of_ideal R L I k :=
1264
- by { rw derived_series_of_ideal_succ, exact lie_submodule.lie_le_left _ _, }
1262
+ local notation `D ` := derived_series_of_ideal R L
1265
1263
1266
- lemma derived_series_of_ideal_le (k : ℕ) : derived_series_of_ideal R L I k ≤ I :=
1264
+ lemma derived_series_of_ideal_add (k l : ℕ) : D I (k + l) = D (D I l) k :=
1267
1265
begin
1268
1266
induction k with k ih,
1269
- { rw derived_series_of_ideal_zero, apply le_refl _ , },
1270
- { exact le_trans (derived_series_of_ideal_succ_le I k) ih , },
1267
+ { rw [zero_add, derived_series_of_ideal_zero] , },
1268
+ { rw [nat.succ_add k l, derived_series_of_ideal_succ, derived_series_of_ideal_succ, ih] , },
1271
1269
end
1272
1270
1271
+ lemma derived_series_of_ideal_le {I J : lie_ideal R L} {k l : ℕ} (h₁ : I ≤ J) (h₂ : l ≤ k) :
1272
+ D I k ≤ D J l :=
1273
+ begin
1274
+ revert l, induction k with k ih; intros l h₂,
1275
+ { rw nat.le_zero_iff at h₂, rw [h₂, derived_series_of_ideal_zero], exact h₁, },
1276
+ { have h : l = k.succ ∨ l ≤ k, { omega, },
1277
+ cases h,
1278
+ { rw h, exact lie_submodule.mono_lie _ _ _ _ (ih (le_refl k)) (ih (le_refl k)), },
1279
+ { exact le_trans (lie_submodule.lie_le_left _ _) (ih h), }, },
1280
+ end
1281
+
1282
+ lemma derived_series_of_ideal_succ_le (k : ℕ) : D I (k + 1 ) ≤ D I k :=
1283
+ derived_series_of_ideal_le (le_refl I) k.le_succ
1284
+
1285
+ lemma derived_series_of_ideal_le_self (k : ℕ) : D I k ≤ I :=
1286
+ derived_series_of_ideal_le (le_refl I) (zero_le k)
1287
+
1288
+ lemma derived_series_of_ideal_mono {I J : lie_ideal R L} (h : I ≤ J) (k : ℕ) : D I k ≤ D J k :=
1289
+ derived_series_of_ideal_le h (le_refl k)
1290
+
1291
+ lemma derived_series_of_ideal_antimono {k l : ℕ} (h : l ≤ k) : D I k ≤ D I l :=
1292
+ derived_series_of_ideal_le (le_refl I) h
1293
+
1273
1294
end lie_algebra
1274
1295
1275
1296
namespace lie_module
@@ -1589,13 +1610,13 @@ begin
1589
1610
{ simp only [derived_series_def, comap_incl_self, derived_series_of_ideal_zero], },
1590
1611
{ simp only [derived_series_def, derived_series_of_ideal_succ] at ⊢ ih, rw ih,
1591
1612
exact comap_bracket_incl_of_le I
1592
- (derived_series_of_ideal_le I k) (derived_series_of_ideal_le I k), },
1613
+ (derived_series_of_ideal_le_self I k) (derived_series_of_ideal_le_self I k), },
1593
1614
end
1594
1615
1595
1616
lemma derived_series_eq_derived_series_of_ideal_map (k : ℕ) :
1596
1617
(derived_series R I k).map I.incl = derived_series_of_ideal R L I k :=
1597
1618
by { rw [derived_series_eq_derived_series_of_ideal_comap, map_comap_incl, inf_eq_right],
1598
- apply derived_series_of_ideal_le , }
1619
+ apply derived_series_of_ideal_le_self , }
1599
1620
1600
1621
lemma derived_series_eq_bot_iff (k : ℕ) :
1601
1622
derived_series R I k = ⊥ ↔ derived_series_of_ideal R L I k = ⊥ :=
0 commit comments