Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a3ef65d

Browse files
committed
feat(algebra/lie/basic): additional lemmas concerning lie_algebra.derived_series_of_ideal (#5815)
1 parent b1d5673 commit a3ef65d

File tree

1 file changed

+29
-8
lines changed

1 file changed

+29
-8
lines changed

src/algebra/lie/basic.lean

Lines changed: 29 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1259,17 +1259,38 @@ lemma derived_series_def (k : ℕ) :
12591259

12601260
variables {R L}
12611261

1262-
lemma derived_series_of_ideal_succ_le (k : ℕ) :
1263-
derived_series_of_ideal R L I (k + 1) ≤ derived_series_of_ideal R L I k :=
1264-
by { rw derived_series_of_ideal_succ, exact lie_submodule.lie_le_left _ _, }
1262+
local notation `D` := derived_series_of_ideal R L
12651263

1266-
lemma derived_series_of_ideal_le (k : ℕ) : derived_series_of_ideal R L I k ≤ I :=
1264+
lemma derived_series_of_ideal_add (k l : ℕ) : D I (k + l) = D (D I l) k :=
12671265
begin
12681266
induction k with k ih,
1269-
{ rw derived_series_of_ideal_zero, apply le_refl _, },
1270-
{ exact le_trans (derived_series_of_ideal_succ_le I k) ih, },
1267+
{ rw [zero_add, derived_series_of_ideal_zero], },
1268+
{ rw [nat.succ_add k l, derived_series_of_ideal_succ, derived_series_of_ideal_succ, ih], },
12711269
end
12721270

1271+
lemma derived_series_of_ideal_le {I J : lie_ideal R L} {k l : ℕ} (h₁ : I ≤ J) (h₂ : l ≤ k) :
1272+
D I k ≤ D J l :=
1273+
begin
1274+
revert l, induction k with k ih; intros l h₂,
1275+
{ rw nat.le_zero_iff at h₂, rw [h₂, derived_series_of_ideal_zero], exact h₁, },
1276+
{ have h : l = k.succ ∨ l ≤ k, { omega, },
1277+
cases h,
1278+
{ rw h, exact lie_submodule.mono_lie _ _ _ _ (ih (le_refl k)) (ih (le_refl k)), },
1279+
{ exact le_trans (lie_submodule.lie_le_left _ _) (ih h), }, },
1280+
end
1281+
1282+
lemma derived_series_of_ideal_succ_le (k : ℕ) : D I (k + 1) ≤ D I k :=
1283+
derived_series_of_ideal_le (le_refl I) k.le_succ
1284+
1285+
lemma derived_series_of_ideal_le_self (k : ℕ) : D I k ≤ I :=
1286+
derived_series_of_ideal_le (le_refl I) (zero_le k)
1287+
1288+
lemma derived_series_of_ideal_mono {I J : lie_ideal R L} (h : I ≤ J) (k : ℕ) : D I k ≤ D J k :=
1289+
derived_series_of_ideal_le h (le_refl k)
1290+
1291+
lemma derived_series_of_ideal_antimono {k l : ℕ} (h : l ≤ k) : D I k ≤ D I l :=
1292+
derived_series_of_ideal_le (le_refl I) h
1293+
12731294
end lie_algebra
12741295

12751296
namespace lie_module
@@ -1589,13 +1610,13 @@ begin
15891610
{ simp only [derived_series_def, comap_incl_self, derived_series_of_ideal_zero], },
15901611
{ simp only [derived_series_def, derived_series_of_ideal_succ] at ⊢ ih, rw ih,
15911612
exact comap_bracket_incl_of_le I
1592-
(derived_series_of_ideal_le I k) (derived_series_of_ideal_le I k), },
1613+
(derived_series_of_ideal_le_self I k) (derived_series_of_ideal_le_self I k), },
15931614
end
15941615

15951616
lemma derived_series_eq_derived_series_of_ideal_map (k : ℕ) :
15961617
(derived_series R I k).map I.incl = derived_series_of_ideal R L I k :=
15971618
by { rw [derived_series_eq_derived_series_of_ideal_comap, map_comap_incl, inf_eq_right],
1598-
apply derived_series_of_ideal_le, }
1619+
apply derived_series_of_ideal_le_self, }
15991620

16001621
lemma derived_series_eq_bot_iff (k : ℕ) :
16011622
derived_series R I k = ⊥ ↔ derived_series_of_ideal R L I k = ⊥ :=

0 commit comments

Comments
 (0)