Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a6415d7

Browse files
committed
chore(data/set/basic): use implicit args in set.ext_iff (#2619)
Most other `ext_iff` lemmas use implicit arguments, let `set.ext_iff` use them too.
1 parent f6edeba commit a6415d7

File tree

8 files changed

+8
-8
lines changed

8 files changed

+8
-8
lines changed

src/data/finset.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ theorem ext' {s₁ s₂ : finset α} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s
6767
ext.2
6868

6969
@[simp] theorem coe_inj {s₁ s₂ : finset α} : (↑s₁ : set α) = ↑s₂ ↔ s₁ = s₂ :=
70-
(set.ext_iff _ _).trans ext.symm
70+
set.ext_iff.trans ext.symm
7171

7272
lemma to_set_injective {α} : function.injective (finset.to_set : finset α → set α) :=
7373
λ s t, coe_inj.1

src/data/semiquot.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ theorem ext_s {q₁ q₂ : semiquot α} : q₁ = q₂ ↔ q₁.s = q₂.s :=
3636
λ h, by cases q₁; cases q₂; congr; exact h⟩
3737

3838
theorem ext {q₁ q₂ : semiquot α} : q₁ = q₂ ↔ ∀ a, a ∈ q₁ ↔ a ∈ q₂ :=
39-
ext_s.trans (set.ext_iff _ _)
39+
ext_s.trans set.ext_iff
4040

4141
theorem exists_mem (q : semiquot α) : ∃ a, a ∈ q :=
4242
let ⟨⟨a, h⟩, h₂⟩ := q.2.exists_rep in ⟨a, h⟩

src/data/set/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ instance : inhabited (set α) := ⟨∅⟩
130130
theorem ext {a b : set α} (h : ∀ x, x ∈ a ↔ x ∈ b) : a = b :=
131131
funext (assume x, propext (h x))
132132

133-
theorem ext_iff (s t : set α) : s = t ↔ ∀ x, x ∈ s ↔ x ∈ t :=
133+
theorem ext_iff {s t : set α} : s = t ↔ ∀ x, x ∈ s ↔ x ∈ t :=
134134
⟨λ h x, by rw h, ext⟩
135135

136136
@[trans] theorem mem_of_mem_of_subset {x : α} {s t : set α} (hx : x ∈ s) (h : s ⊆ t) : x ∈ t := h hx

src/data/setoid.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -365,7 +365,7 @@ lemma mem_classes (r : setoid α) (y) : {x | r.rel x y} ∈ r.classes := ⟨y, r
365365
/-- Two equivalence relations are equal iff all their equivalence classes are equal. -/
366366
lemma eq_iff_classes_eq {r₁ r₂ : setoid α} :
367367
r₁ = r₂ ↔ ∀ x, {y | r₁.rel x y} = {y | r₂.rel x y} :=
368-
⟨λ h x, h ▸ rfl, λ h, ext' $ λ x, (set.ext_iff _ _).1 $ h x⟩
368+
⟨λ h x, h ▸ rfl, λ h, ext' $ λ x, set.ext_iff.1 $ h x⟩
369369

370370
lemma rel_iff_exists_classes (r : setoid α) {x y} :
371371
r.rel x y ↔ ∃ c ∈ r.classes, x ∈ c ∧ y ∈ c :=

src/linear_algebra/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -939,7 +939,7 @@ def range (f : M →ₗ[R] M₂) : submodule R M₂ := map f ⊤
939939
theorem range_coe (f : M →ₗ[R] M₂) : (range f : set M₂) = set.range f := set.image_univ
940940

941941
@[simp] theorem mem_range {f : M →ₗ[R] M₂} : ∀ {x}, x ∈ range f ↔ ∃ y, f y = x :=
942-
(set.ext_iff _ _).1 (range_coe f).
942+
set.ext_iff.1 (range_coe f).
943943

944944
@[simp] theorem range_id : range (linear_map.id : M →ₗ[R] M) = ⊤ := map_id _
945945

src/set_theory/zfc.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ def to_set (u : pSet.{u}) : set pSet.{u} := {x | x ∈ u}
121121

122122
/-- Two pre-sets are equivalent iff they have the same members. -/
123123
theorem equiv.eq {x y : pSet} : equiv x y ↔ to_set x = to_set y :=
124-
equiv_iff_mem.trans (set.ext_iff _ _).symm
124+
equiv_iff_mem.trans set.ext_iff.symm
125125

126126
instance : has_coe pSet (set pSet) := ⟨to_set⟩
127127

src/topology/separation.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@ t2_space.t2 x y h
148148
instance t2_space.t1_space [t2_space α] : t1_space α :=
149149
⟨λ x, is_open_iff_forall_mem_open.2 $ λ y hxy,
150150
let ⟨u, v, hu, hv, hyu, hxv, huv⟩ := t2_separation (mt mem_singleton_of_eq hxy) in
151-
⟨u, λ z hz1 hz2, ((ext_iff _ _).1 huv x).1 ⟨mem_singleton_iff.1 hz2 ▸ hz1, hxv⟩, hu, hyu⟩⟩
151+
⟨u, λ z hz1 hz2, (ext_iff.1 huv x).1 ⟨mem_singleton_iff.1 hz2 ▸ hz1, hxv⟩, hu, hyu⟩⟩
152152

153153
lemma eq_of_nhds_ne_bot [ht : t2_space α] {x y : α} (h : 𝓝 x ⊓ 𝓝 y ≠ ⊥) : x = y :=
154154
classical.by_contradiction $ assume : x ≠ y,

src/topology/subset_properties.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1175,7 +1175,7 @@ theorem is_totally_disconnected_of_is_totally_separated {s : set α}
11751175
λ t hts ht, ⟨λ ⟨x, hxt⟩ ⟨y, hyt⟩, subtype.eq $ classical.by_contradiction $
11761176
assume hxy : x ≠ y, let ⟨u, v, hu, hv, hxu, hyv, hsuv, huv⟩ := H x (hts hxt) y (hts hyt) hxy in
11771177
let ⟨r, hrt, hruv⟩ := ht u v hu hv (subset.trans hts hsuv) ⟨x, hxt, hxu⟩ ⟨y, hyt, hyv⟩ in
1178-
((ext_iff _ _).1 huv r).1 hruv⟩
1178+
(ext_iff.1 huv r).1 hruv⟩
11791179

11801180
/-- A space is totally separated if any two points can be separated by two disjoint open sets
11811181
covering the whole space. -/

0 commit comments

Comments
 (0)