@@ -291,6 +291,31 @@ instance has_lift2 {F : intermediate_field K L} :
291
291
@[simp] lemma mem_lift2 {F : intermediate_field K L} {E : intermediate_field F L} {x : L} :
292
292
x ∈ (↑E : intermediate_field K L) ↔ x ∈ E := iff.rfl
293
293
294
+ instance lift2_alg {F : intermediate_field K L} {E : intermediate_field F L} : algebra K E :=
295
+ { to_fun := (algebra_map F E).comp (algebra_map K F),
296
+ map_zero' := ((algebra_map F E).comp (algebra_map K F)).map_zero,
297
+ map_one' := ((algebra_map F E).comp (algebra_map K F)).map_one,
298
+ map_add' := ((algebra_map F E).comp (algebra_map K F)).map_add,
299
+ map_mul' := ((algebra_map F E).comp (algebra_map K F)).map_mul,
300
+ smul := λ a b, (((algebra_map F E).comp (algebra_map K F)) a) * b,
301
+ smul_def' := λ _ _, rfl,
302
+ commutes' := λ a b, mul_comm (((algebra_map F E).comp (algebra_map K F)) a) b }
303
+
304
+ instance lift2_tower {F : intermediate_field K L} {E : intermediate_field F L} :
305
+ is_scalar_tower K F E :=
306
+ ⟨λ a b c, by { simp only [algebra.smul_def, ring_hom.map_mul, mul_assoc], refl }⟩
307
+
308
+ /-- `lift2` is isomorphic to the original `intermediate_field`. -/
309
+ def lift2_alg_equiv {F : intermediate_field K L} (E : intermediate_field F L) :
310
+ (↑E : intermediate_field K L) ≃ₐ[K] E :=
311
+ { to_fun := λ x, x,
312
+ inv_fun := λ x, x,
313
+ left_inv := λ x, rfl,
314
+ right_inv := λ x, rfl,
315
+ map_add' := λ x y, rfl,
316
+ map_mul' := λ x y, rfl,
317
+ commutes' := λ x, rfl }
318
+
294
319
end tower
295
320
296
321
section finite_dimensional
0 commit comments