@@ -370,10 +370,34 @@ end partial_order
370
370
section linear_order
371
371
variables {α : Type u} [linear_order α] {a a₁ a₂ b b₁ b₂ : α}
372
372
373
- lemma compl_Iic : (Iic a)ᶜ = Ioi a := ext $ λ _, not_le
374
- lemma compl_Ici : (Ici a)ᶜ = Iio a := ext $ λ _, not_le
375
- lemma compl_Iio : (Iio a)ᶜ = Ici a := ext $ λ _, not_lt
376
- lemma compl_Ioi : (Ioi a)ᶜ = Iic a := ext $ λ _, not_lt
373
+ @[simp] lemma compl_Iic : (Iic a)ᶜ = Ioi a := ext $ λ _, not_le
374
+ @[simp] lemma compl_Ici : (Ici a)ᶜ = Iio a := ext $ λ _, not_le
375
+ @[simp] lemma compl_Iio : (Iio a)ᶜ = Ici a := ext $ λ _, not_lt
376
+ @[simp] lemma compl_Ioi : (Ioi a)ᶜ = Iic a := ext $ λ _, not_lt
377
+
378
+ @[simp] lemma Ici_diff_Ici : Ici a \ Ici b = Ico a b :=
379
+ by rw [diff_eq, compl_Ici, Ici_inter_Iio]
380
+
381
+ @[simp] lemma Ici_diff_Ioi : Ici a \ Ioi b = Icc a b :=
382
+ by rw [diff_eq, compl_Ioi, Ici_inter_Iic]
383
+
384
+ @[simp] lemma Ioi_diff_Ioi : Ioi a \ Ioi b = Ioc a b :=
385
+ by rw [diff_eq, compl_Ioi, Ioi_inter_Iic]
386
+
387
+ @[simp] lemma Ioi_diff_Ici : Ioi a \ Ici b = Ioo a b :=
388
+ by rw [diff_eq, compl_Ici, Ioi_inter_Iio]
389
+
390
+ @[simp] lemma Iic_diff_Iic : Iic b \ Iic a = Ioc a b :=
391
+ by rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iic]
392
+
393
+ @[simp] lemma Iio_diff_Iic : Iio b \ Iic a = Ioo a b :=
394
+ by rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iio]
395
+
396
+ @[simp] lemma Iic_diff_Iio : Iic b \ Iio a = Icc a b :=
397
+ by rw [diff_eq, compl_Iio, inter_comm, Ici_inter_Iic]
398
+
399
+ @[simp] lemma Iio_diff_Iio : Iio b \ Iio a = Ico a b :=
400
+ by rw [diff_eq, compl_Iio, inter_comm, Ici_inter_Iio]
377
401
378
402
lemma Ioo_eq_empty_iff [densely_ordered α] : Ioo a b = ∅ ↔ b ≤ a :=
379
403
⟨λ eq, le_of_not_lt $ λ h,
@@ -440,12 +464,7 @@ begin
440
464
end
441
465
442
466
@[simp] lemma Iio_subset_Iic_iff [densely_ordered α] : Iio a ⊆ Iic b ↔ a ≤ b :=
443
- begin
444
- refine ⟨λh, _, λh, Iio_subset_Iic h⟩,
445
- by_contradiction ba,
446
- obtain ⟨c, bc, ca⟩ : ∃c, b < c ∧ c < a := dense (not_le.mp ba),
447
- exact lt_irrefl _ (lt_of_lt_of_le bc (h ca))
448
- end
467
+ by rw [← diff_eq_empty, Iio_diff_Iic, Ioo_eq_empty_iff]
449
468
450
469
/-! ### Unions of adjacent intervals -/
451
470
0 commit comments