@@ -201,6 +201,55 @@ alias dimH_finite ← set.finite.dimH_zero
201
201
202
202
alias dimH_coe_finset ← finset.dimH_zero
203
203
204
+ /-!
205
+ ### Hausdorff dimension as the supremum of local Hausdorff dimensions
206
+ -/
207
+
208
+ section
209
+
210
+ variables [second_countable_topology X]
211
+
212
+ /-- If `r` is less than the Hausdorff dimension of a set `s` in an (extended) metric space with
213
+ second countable topology, then there exists a point `x ∈ s` such that every neighborhood
214
+ `t` of `x` within `s` has Hausdorff dimension greater than `r`. -/
215
+ lemma exists_mem_nhds_within_lt_dimH_of_lt_dimH {s : set X} {r : ℝ≥0 ∞} (h : r < dimH s) :
216
+ ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, r < dimH t :=
217
+ begin
218
+ contrapose! h, choose! t htx htr using h,
219
+ rcases countable_cover_nhds_within htx with ⟨S, hSs, hSc, hSU⟩,
220
+ calc dimH s ≤ dimH (⋃ x ∈ S, t x) : dimH_mono hSU
221
+ ... = ⨆ x ∈ S, dimH (t x) : dimH_bUnion hSc _
222
+ ... ≤ r : bsupr_le (λ x hx, htr x (hSs hx))
223
+ end
224
+
225
+ /-- In an (extended) metric space with second countable topology, the Hausdorff dimension
226
+ of a set `s` is the supremum over `x ∈ s` of the limit superiors of `dimH t` along
227
+ `(𝓝[s] x).lift' powerset`. -/
228
+ lemma bsupr_limsup_dimH (s : set X) : (⨆ x ∈ s, limsup ((𝓝[s] x).lift' powerset) dimH) = dimH s :=
229
+ begin
230
+ refine le_antisymm (bsupr_le $ λ x hx, _) _,
231
+ { refine Limsup_le_of_le (by apply_auto_param) (eventually_map.2 _),
232
+ exact eventually_lift'_powerset.2 ⟨s, self_mem_nhds_within, λ t, dimH_mono⟩ },
233
+ { refine le_of_forall_ge_of_dense (λ r hr, _),
234
+ rcases exists_mem_nhds_within_lt_dimH_of_lt_dimH hr with ⟨x, hxs, hxr⟩,
235
+ refine le_bsupr_of_le x hxs _, rw limsup_eq, refine le_Inf (λ b hb, _),
236
+ rcases eventually_lift'_powerset.1 hb with ⟨t, htx, ht⟩,
237
+ exact (hxr t htx).le.trans (ht t subset.rfl) }
238
+ end
239
+
240
+ /-- In an (extended) metric space with second countable topology, the Hausdorff dimension
241
+ of a set `s` is the supremum over all `x` of the limit superiors of `dimH t` along
242
+ `(𝓝[s] x).lift' powerset`. -/
243
+ lemma supr_limsup_dimH (s : set X) : (⨆ x, limsup ((𝓝[s] x).lift' powerset) dimH) = dimH s :=
244
+ begin
245
+ refine le_antisymm (supr_le $ λ x, _) _,
246
+ { refine Limsup_le_of_le (by apply_auto_param) (eventually_map.2 _),
247
+ exact eventually_lift'_powerset.2 ⟨s, self_mem_nhds_within, λ t, dimH_mono⟩ },
248
+ { rw ← bsupr_limsup_dimH, exact bsupr_le_supr _ _ }
249
+ end
250
+
251
+ end
252
+
204
253
/-!
205
254
### Hausdorff dimension and Hölder continuity
206
255
-/
0 commit comments