Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a7ac699

Browse files
committed
feat(topology/metric_space): dimH is the supr of local dimH (#9741)
1 parent 06179ca commit a7ac699

File tree

1 file changed

+49
-0
lines changed

1 file changed

+49
-0
lines changed

src/topology/metric_space/hausdorff_dimension.lean

Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -201,6 +201,55 @@ alias dimH_finite ← set.finite.dimH_zero
201201

202202
alias dimH_coe_finset ← finset.dimH_zero
203203

204+
/-!
205+
### Hausdorff dimension as the supremum of local Hausdorff dimensions
206+
-/
207+
208+
section
209+
210+
variables [second_countable_topology X]
211+
212+
/-- If `r` is less than the Hausdorff dimension of a set `s` in an (extended) metric space with
213+
second countable topology, then there exists a point `x ∈ s` such that every neighborhood
214+
`t` of `x` within `s` has Hausdorff dimension greater than `r`. -/
215+
lemma exists_mem_nhds_within_lt_dimH_of_lt_dimH {s : set X} {r : ℝ≥0∞} (h : r < dimH s) :
216+
∃ x ∈ s, ∀ t ∈ 𝓝[s] x, r < dimH t :=
217+
begin
218+
contrapose! h, choose! t htx htr using h,
219+
rcases countable_cover_nhds_within htx with ⟨S, hSs, hSc, hSU⟩,
220+
calc dimH s ≤ dimH (⋃ x ∈ S, t x) : dimH_mono hSU
221+
... = ⨆ x ∈ S, dimH (t x) : dimH_bUnion hSc _
222+
... ≤ r : bsupr_le (λ x hx, htr x (hSs hx))
223+
end
224+
225+
/-- In an (extended) metric space with second countable topology, the Hausdorff dimension
226+
of a set `s` is the supremum over `x ∈ s` of the limit superiors of `dimH t` along
227+
`(𝓝[s] x).lift' powerset`. -/
228+
lemma bsupr_limsup_dimH (s : set X) : (⨆ x ∈ s, limsup ((𝓝[s] x).lift' powerset) dimH) = dimH s :=
229+
begin
230+
refine le_antisymm (bsupr_le $ λ x hx, _) _,
231+
{ refine Limsup_le_of_le (by apply_auto_param) (eventually_map.2 _),
232+
exact eventually_lift'_powerset.2 ⟨s, self_mem_nhds_within, λ t, dimH_mono⟩ },
233+
{ refine le_of_forall_ge_of_dense (λ r hr, _),
234+
rcases exists_mem_nhds_within_lt_dimH_of_lt_dimH hr with ⟨x, hxs, hxr⟩,
235+
refine le_bsupr_of_le x hxs _, rw limsup_eq, refine le_Inf (λ b hb, _),
236+
rcases eventually_lift'_powerset.1 hb with ⟨t, htx, ht⟩,
237+
exact (hxr t htx).le.trans (ht t subset.rfl) }
238+
end
239+
240+
/-- In an (extended) metric space with second countable topology, the Hausdorff dimension
241+
of a set `s` is the supremum over all `x` of the limit superiors of `dimH t` along
242+
`(𝓝[s] x).lift' powerset`. -/
243+
lemma supr_limsup_dimH (s : set X) : (⨆ x, limsup ((𝓝[s] x).lift' powerset) dimH) = dimH s :=
244+
begin
245+
refine le_antisymm (supr_le $ λ x, _) _,
246+
{ refine Limsup_le_of_le (by apply_auto_param) (eventually_map.2 _),
247+
exact eventually_lift'_powerset.2 ⟨s, self_mem_nhds_within, λ t, dimH_mono⟩ },
248+
{ rw ← bsupr_limsup_dimH, exact bsupr_le_supr _ _ }
249+
end
250+
251+
end
252+
204253
/-!
205254
### Hausdorff dimension and Hölder continuity
206255
-/

0 commit comments

Comments
 (0)