|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Lu-Ming Zhang |
| 5 | +-/ |
| 6 | +import data.matrix.notation |
| 7 | +import linear_algebra.matrix.trace |
| 8 | + |
| 9 | +/-! |
| 10 | +# Hadamard product of matrices |
| 11 | +
|
| 12 | +This file defines the Hadamard product `matrix.hadamard` |
| 13 | +and contains basic properties about them. |
| 14 | +
|
| 15 | +## Main definition |
| 16 | +
|
| 17 | +- `matrix.hadamard`: defines the Hadamard product, |
| 18 | + which is the pointwise product of two matrices of the same size. |
| 19 | +
|
| 20 | +## Notation |
| 21 | +
|
| 22 | +* `⊙`: the Hadamard product `matrix.hadamard`; |
| 23 | +
|
| 24 | +## References |
| 25 | +
|
| 26 | +* <https://en.wikipedia.org/wiki/hadamard_product_(matrices)> |
| 27 | +
|
| 28 | +## Tags |
| 29 | +
|
| 30 | +hadamard product, hadamard |
| 31 | +-/ |
| 32 | + |
| 33 | +variables {α β γ m n : Type*} |
| 34 | +variables {R : Type*} |
| 35 | + |
| 36 | +namespace matrix |
| 37 | +open_locale matrix big_operators |
| 38 | + |
| 39 | +/-- `matrix.hadamard` defines the Hadamard product, |
| 40 | + which is the pointwise product of two matrices of the same size.-/ |
| 41 | +@[simp] |
| 42 | +def hadamard [has_mul α] (A : matrix m n α) (B : matrix m n α) : matrix m n α |
| 43 | +| i j := A i j * B i j |
| 44 | + |
| 45 | +localized "infix ` ⊙ `:100 := matrix.hadamard" in matrix |
| 46 | + |
| 47 | +section basic_properties |
| 48 | + |
| 49 | +variables (A : matrix m n α) (B : matrix m n α) (C : matrix m n α) |
| 50 | + |
| 51 | +/- commutativity -/ |
| 52 | +lemma hadamard_comm [comm_semigroup α] : A ⊙ B = B ⊙ A := |
| 53 | +ext $ λ _ _, mul_comm _ _ |
| 54 | + |
| 55 | +/- associativity -/ |
| 56 | +lemma hadamard_assoc [semigroup α] : A ⊙ B ⊙ C = A ⊙ (B ⊙ C) := |
| 57 | +ext $ λ _ _, mul_assoc _ _ _ |
| 58 | + |
| 59 | +/- distributivity -/ |
| 60 | +lemma hadamard_add [distrib α] : A ⊙ (B + C) = A ⊙ B + A ⊙ C := |
| 61 | +ext $ λ _ _, left_distrib _ _ _ |
| 62 | + |
| 63 | +lemma add_hadamard [distrib α] : (B + C) ⊙ A = B ⊙ A + C ⊙ A := |
| 64 | +ext $ λ _ _, right_distrib _ _ _ |
| 65 | + |
| 66 | +/- scalar multiplication -/ |
| 67 | +section scalar |
| 68 | + |
| 69 | +@[simp] lemma smul_hadamard [has_mul α] [has_scalar R α] [is_scalar_tower R α α] (k : R) : |
| 70 | + (k • A) ⊙ B = k • A ⊙ B := |
| 71 | +ext $ λ _ _, smul_mul_assoc _ _ _ |
| 72 | + |
| 73 | +@[simp] lemma hadamard_smul [has_mul α] [has_scalar R α] [smul_comm_class R α α] (k : R): |
| 74 | + A ⊙ (k • B) = k • A ⊙ B := |
| 75 | +ext $ λ _ _, mul_smul_comm _ _ _ |
| 76 | + |
| 77 | +end scalar |
| 78 | + |
| 79 | +section zero |
| 80 | + |
| 81 | +variables [mul_zero_class α] |
| 82 | + |
| 83 | +@[simp] lemma hadamard_zero : A ⊙ (0 : matrix m n α) = 0 := |
| 84 | +ext $ λ _ _, mul_zero _ |
| 85 | + |
| 86 | +@[simp] lemma zero_hadamard : (0 : matrix m n α) ⊙ A = 0 := |
| 87 | +ext $ λ _ _, zero_mul _ |
| 88 | + |
| 89 | +end zero |
| 90 | + |
| 91 | +section one |
| 92 | + |
| 93 | +variables [decidable_eq n] [mul_zero_one_class α] |
| 94 | +variables (M : matrix n n α) |
| 95 | + |
| 96 | +lemma hadamard_one : M ⊙ (1 : matrix n n α) = diagonal (λ i, M i i) := |
| 97 | +by { ext, by_cases h : i = j; simp [h] } |
| 98 | + |
| 99 | +lemma one_hadamard : (1 : matrix n n α) ⊙ M = diagonal (λ i, M i i) := |
| 100 | +by { ext, by_cases h : i = j; simp [h] } |
| 101 | + |
| 102 | +end one |
| 103 | + |
| 104 | +section diagonal |
| 105 | + |
| 106 | +variables [decidable_eq n] [mul_zero_class α] |
| 107 | + |
| 108 | +lemma diagonal_hadamard_diagonal (v : n → α) (w : n → α) : |
| 109 | + diagonal v ⊙ diagonal w = diagonal (v * w) := |
| 110 | +ext $ λ _ _, (apply_ite2 _ _ _ _ _ _).trans (congr_arg _ $ zero_mul 0) |
| 111 | + |
| 112 | +end diagonal |
| 113 | + |
| 114 | +section trace |
| 115 | + |
| 116 | +variables [fintype m] [fintype n] |
| 117 | +variables (R) [semiring α] [semiring R] [module R α] |
| 118 | + |
| 119 | +lemma sum_hadamard_eq : ∑ (i : m) (j : n), (A ⊙ B) i j = trace m R α (A ⬝ Bᵀ) := |
| 120 | +rfl |
| 121 | + |
| 122 | +lemma dot_product_vec_mul_hadamard [decidable_eq m] [decidable_eq n] (v : m → α) (w : n → α) : |
| 123 | + dot_product (vec_mul v (A ⊙ B)) w = trace m R α (diagonal v ⬝ A ⬝ (B ⬝ diagonal w)ᵀ) := |
| 124 | +begin |
| 125 | + rw [←sum_hadamard_eq, finset.sum_comm], |
| 126 | + simp [dot_product, vec_mul, finset.sum_mul, mul_assoc], |
| 127 | +end |
| 128 | + |
| 129 | +end trace |
| 130 | + |
| 131 | +end basic_properties |
| 132 | + |
| 133 | +end matrix |
0 commit comments