Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a84a80d

Browse files
committed
fix(topology/algebra/infinite_sum): add missing decidable arguments (#5993)
These decidable instances were being inferred as classical instances, which meant these lemmas would not match other instances.
1 parent 64283ce commit a84a80d

File tree

1 file changed

+4
-2
lines changed

1 file changed

+4
-2
lines changed

src/topology/algebra/infinite_sum.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -137,7 +137,8 @@ suffices has_sum f (∑ b' in {b}, f b'),
137137
by simpa using this,
138138
has_sum_sum_of_ne_finset_zero $ by simpa [hf]
139139

140-
lemma has_sum_ite_eq (b : β) (a : α) : has_sum (λb', if b' = b then a else 0) a :=
140+
lemma has_sum_ite_eq (b : β) [decidable_pred (= b)] (a : α) :
141+
has_sum (λb', if b' = b then a else 0) a :=
141142
begin
142143
convert has_sum_single b _,
143144
{ exact (if_pos rfl).symm },
@@ -319,7 +320,8 @@ lemma tsum_eq_single {f : β → α} (b : β) (hf : ∀b' ≠ b, f b' = 0) :
319320
∑'b, f b = f b :=
320321
(has_sum_single b hf).tsum_eq
321322

322-
@[simp] lemma tsum_ite_eq (b : β) (a : α) : ∑'b', (if b' = b then a else 0) = a :=
323+
@[simp] lemma tsum_ite_eq (b : β) [decidable_pred (= b)] (a : α) :
324+
∑' b', (if b' = b then a else 0) = a :=
323325
(has_sum_ite_eq b a).tsum_eq
324326

325327
lemma equiv.tsum_eq_tsum_of_has_sum_iff_has_sum {α' : Type*} [add_comm_monoid α']

0 commit comments

Comments
 (0)