Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a84b538

Browse files
committed
feat(algebra/algebra/subalgebra): inclusion map of subalgebras (#9013)
Co-authored-by: Chris Hughes <chrishughes24@gmail.com>
1 parent d69c12e commit a84b538

File tree

1 file changed

+29
-0
lines changed

1 file changed

+29
-0
lines changed

src/algebra/algebra/subalgebra.lean

Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -648,6 +648,35 @@ instance : unique (subalgebra R R) :=
648648
end
649649
.. algebra.subalgebra.inhabited }
650650

651+
/-- The map `S → T` when `S` is a subalgebra contained in the subalgebra `T`.
652+
653+
This is the subalgebra version of `submodule.of_le`, or `subring.inclusion` -/
654+
def inclusion {S T : subalgebra R A} (h : S ≤ T) : S →ₐ[R] T :=
655+
{ to_fun := set.inclusion h,
656+
map_one' := rfl,
657+
map_add' := λ _ _, rfl,
658+
map_mul' := λ _ _, rfl,
659+
map_zero' := rfl,
660+
commutes' := λ _, rfl }
661+
662+
lemma inclusion_injective {S T : subalgebra R A} (h : S ≤ T) :
663+
function.injective (inclusion h) :=
664+
λ _ _, subtype.ext ∘ subtype.mk.inj
665+
666+
@[simp] lemma inclusion_self {S : subalgebra R A}:
667+
inclusion (le_refl S) = alg_hom.id R S :=
668+
alg_hom.ext $ λ x, subtype.ext rfl
669+
670+
@[simp] lemma inclusion_right {S T : subalgebra R A} (h : S ≤ T) (x : T)
671+
(m : (x : A) ∈ S) : inclusion h ⟨x, m⟩ = x := subtype.ext rfl
672+
673+
@[simp] lemma inclusion_inclusion {S T U : subalgebra R A} (hst : S ≤ T) (htu : T ≤ U)
674+
(x : S) : inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=
675+
subtype.ext rfl
676+
677+
@[simp] lemma coe_inclusion {S T : subalgebra R A} (h : S ≤ T) (s : S) :
678+
(inclusion h s : A) = s := rfl
679+
651680
/-- Two subalgebras that are equal are also equivalent as algebras.
652681
653682
This is the `subalgebra` version of `linear_equiv.of_eq` and `equiv.set.of_eq`. -/

0 commit comments

Comments
 (0)