@@ -1797,18 +1797,28 @@ variables [complete_linear_order α] [topological_space α] [order_topology α]
1797
1797
/-- If the liminf and the limsup of a function coincide, then the limit of the function
1798
1798
exists and has the same value -/
1799
1799
theorem tendsto_of_liminf_eq_limsup {f : filter β} {u : β → α} {a : α}
1800
- (h : liminf f u = a ∧ limsup f u = a) : tendsto u f (𝓝 a) :=
1801
- le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot h.2 h.1
1800
+ (hinf : liminf f u = a) (hsup : limsup f u = a) : tendsto u f (𝓝 a) :=
1801
+ le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot hsup hinf
1802
+
1803
+ /-- If a number `a` is less than or equal to the `liminf` of a function `f` at some filter
1804
+ and is greater than or equal to the `limsup` of `f`, then `f` tends to `a` along this filter. -/
1805
+ theorem tendsto_of_le_liminf_of_limsup_le {f : filter β} {u : β → α} {a : α}
1806
+ (hinf : a ≤ liminf f u) (hsup : limsup f u ≤ a) :
1807
+ tendsto u f (𝓝 a) :=
1808
+ if hf : f = ⊥ then hf.symm ▸ tendsto_bot
1809
+ else tendsto_of_liminf_eq_limsup
1810
+ (le_antisymm (le_trans (liminf_le_limsup hf) hsup) hinf)
1811
+ (le_antisymm hsup (le_trans hinf (liminf_le_limsup hf)))
1802
1812
1803
1813
/-- If a function has a limit, then its limsup coincides with its limit-/
1804
- theorem limsup_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1814
+ theorem filter.tendsto.limsup_eq {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1805
1815
(h : tendsto u f (𝓝 a)) : limsup f u = a :=
1806
- Limsup_eq_of_le_nhds (map_ne_bot hf) h
1816
+ Limsup_eq_of_le_nhds (map_ne_bot hf) h
1807
1817
1808
1818
/-- If a function has a limit, then its liminf coincides with its limit-/
1809
- theorem liminf_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1819
+ theorem filter.tendsto.liminf_eq {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1810
1820
(h : tendsto u f (𝓝 a)) : liminf f u = a :=
1811
- Liminf_eq_of_le_nhds (map_ne_bot hf) h
1821
+ Liminf_eq_of_le_nhds (map_ne_bot hf) h
1812
1822
1813
1823
end complete_linear_order
1814
1824
0 commit comments