Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit a8c10e1

Browse files
committed
chore(topology/algebra/ordered): rename lim*_eq_of_tendsto to tendsto.lim*_eq (#3415)
Also add `tendsto_of_le_liminf_of_limsup_le`
1 parent 1311eb2 commit a8c10e1

File tree

3 files changed

+20
-22
lines changed

3 files changed

+20
-22
lines changed

src/analysis/analytic/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ begin
111111
{ simp } },
112112
have D : liminf at_top (λ n : ℕ, (r : ennreal) / ((C + 1)^(1/(n : ℝ)) : nnreal)) ≤ p.radius :=
113113
liminf_le_liminf B,
114-
rw liminf_eq_of_tendsto filter.at_top_ne_bot L at D,
114+
rw L.liminf_eq filter.at_top_ne_bot at D,
115115
simpa using D
116116
end
117117

src/measure_theory/integration.lean

Lines changed: 3 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1139,26 +1139,14 @@ begin
11391139
limsup at_top (λ (n : ℕ), lintegral (F n)) ≤ ∫⁻ (a : α), limsup at_top (λn, F n a) :
11401140
limsup_lintegral_le hF_meas h_bound h_fin
11411141
... = lintegral f :
1142-
lintegral_congr_ae $
1143-
by filter_upwards [h_lim] assume a h, limsup_eq_of_tendsto at_top_ne_bot h,
1142+
lintegral_congr_ae $ h_lim.mono $ assume a h, h.limsup_eq at_top_ne_bot,
11441143
have lintegral_le_liminf :=
11451144
calc
11461145
lintegral f = ∫⁻ (a : α), liminf at_top (λ (n : ℕ), F n a) :
1147-
lintegral_congr_ae $
1148-
by filter_upwards [h_lim] assume a h, (liminf_eq_of_tendsto at_top_ne_bot h).symm
1146+
lintegral_congr_ae $ h_lim.mono $ assume a h, (h.liminf_eq at_top_ne_bot).symm
11491147
... ≤ liminf at_top (λ n, lintegral (F n)) :
11501148
lintegral_liminf_le hF_meas,
1151-
have liminf_eq_limsup :=
1152-
le_antisymm
1153-
(liminf_le_limsup (map_ne_bot at_top_ne_bot))
1154-
(le_trans limsup_le_lintegral lintegral_le_liminf),
1155-
have liminf_eq_lintegral : liminf at_top (λ n, lintegral (F n)) = lintegral f :=
1156-
le_antisymm (by convert limsup_le_lintegral) lintegral_le_liminf,
1157-
have limsup_eq_lintegral : limsup at_top (λ n, lintegral (F n)) = lintegral f :=
1158-
le_antisymm
1159-
limsup_le_lintegral
1160-
begin convert lintegral_le_liminf, exact liminf_eq_limsup.symm end,
1161-
exact tendsto_of_liminf_eq_limsup ⟨liminf_eq_lintegral, limsup_eq_lintegral⟩
1149+
exact tendsto_of_le_liminf_of_limsup_le lintegral_le_liminf limsup_le_lintegral
11621150
end
11631151

11641152
/-- Dominated convergence theorem for filters with a countable basis -/

src/topology/algebra/ordered.lean

Lines changed: 16 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1797,18 +1797,28 @@ variables [complete_linear_order α] [topological_space α] [order_topology α]
17971797
/-- If the liminf and the limsup of a function coincide, then the limit of the function
17981798
exists and has the same value -/
17991799
theorem tendsto_of_liminf_eq_limsup {f : filter β} {u : β → α} {a : α}
1800-
(h : liminf f u = a ∧ limsup f u = a) : tendsto u f (𝓝 a) :=
1801-
le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot h.2 h.1
1800+
(hinf : liminf f u = a) (hsup : limsup f u = a) : tendsto u f (𝓝 a) :=
1801+
le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot hsup hinf
1802+
1803+
/-- If a number `a` is less than or equal to the `liminf` of a function `f` at some filter
1804+
and is greater than or equal to the `limsup` of `f`, then `f` tends to `a` along this filter. -/
1805+
theorem tendsto_of_le_liminf_of_limsup_le {f : filter β} {u : β → α} {a : α}
1806+
(hinf : a ≤ liminf f u) (hsup : limsup f u ≤ a) :
1807+
tendsto u f (𝓝 a) :=
1808+
if hf : f = ⊥ then hf.symm ▸ tendsto_bot
1809+
else tendsto_of_liminf_eq_limsup
1810+
(le_antisymm (le_trans (liminf_le_limsup hf) hsup) hinf)
1811+
(le_antisymm hsup (le_trans hinf (liminf_le_limsup hf)))
18021812

18031813
/-- If a function has a limit, then its limsup coincides with its limit-/
1804-
theorem limsup_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1814+
theorem filter.tendsto.limsup_eq {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
18051815
(h : tendsto u f (𝓝 a)) : limsup f u = a :=
1806-
Limsup_eq_of_le_nhds (map_ne_bot hf) h
1816+
Limsup_eq_of_le_nhds (map_ne_bot hf) h
18071817

18081818
/-- If a function has a limit, then its liminf coincides with its limit-/
1809-
theorem liminf_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
1819+
theorem filter.tendsto.liminf_eq {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥)
18101820
(h : tendsto u f (𝓝 a)) : liminf f u = a :=
1811-
Liminf_eq_of_le_nhds (map_ne_bot hf) h
1821+
Liminf_eq_of_le_nhds (map_ne_bot hf) h
18121822

18131823
end complete_linear_order
18141824

0 commit comments

Comments
 (0)