@@ -47,7 +47,7 @@ seminorm, locally convex
47
47
open normed_field set seminorm topological_space
48
48
open_locale big_operators nnreal pointwise topological_space
49
49
50
- variables {𝕜 E F G ι ι' : Type *}
50
+ variables {𝕜 𝕜₂ E F G ι ι' : Type *}
51
51
52
52
section filter_basis
53
53
@@ -211,21 +211,23 @@ section bounded
211
211
212
212
namespace seminorm
213
213
214
- variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [add_comm_group F] [module 𝕜 F]
214
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E]
215
+ variables [normed_field 𝕜₂] [add_comm_group F] [module 𝕜₂ F]
216
+ variables {σ₁₂ : 𝕜 →+* 𝕜₂} [ring_hom_isometric σ₁₂]
215
217
216
218
-- Todo: This should be phrased entirely in terms of the von Neumann bornology.
217
219
218
220
/-- The proposition that a linear map is bounded between spaces with families of seminorms. -/
219
- def is_bounded (p : ι → seminorm 𝕜 E) (q : ι' → seminorm 𝕜 F) (f : E →ₗ[𝕜 ] F) : Prop :=
221
+ def is_bounded (p : ι → seminorm 𝕜 E) (q : ι' → seminorm 𝕜₂ F) (f : E →ₛₗ[σ₁₂ ] F) : Prop :=
220
222
∀ i, ∃ s : finset ι, ∃ C : ℝ≥0 , C ≠ 0 ∧ (q i).comp f ≤ C • s.sup p
221
223
222
224
lemma is_bounded_const (ι' : Type *) [nonempty ι']
223
- {p : ι → seminorm 𝕜 E} {q : seminorm 𝕜 F} (f : E →ₗ[𝕜 ] F) :
225
+ {p : ι → seminorm 𝕜 E} {q : seminorm 𝕜₂ F} (f : E →ₛₗ[σ₁₂ ] F) :
224
226
is_bounded p (λ _ : ι', q) f ↔ ∃ (s : finset ι) C : ℝ≥0 , C ≠ 0 ∧ q.comp f ≤ C • s.sup p :=
225
227
by simp only [is_bounded, forall_const]
226
228
227
229
lemma const_is_bounded (ι : Type *) [nonempty ι]
228
- {p : seminorm 𝕜 E} {q : ι' → seminorm 𝕜 F} (f : E →ₗ[𝕜 ] F) :
230
+ {p : seminorm 𝕜 E} {q : ι' → seminorm 𝕜₂ F} (f : E →ₛₗ[σ₁₂ ] F) :
229
231
is_bounded (λ _ : ι, p) q f ↔ ∀ i, ∃ C : ℝ≥0 , C ≠ 0 ∧ (q i).comp f ≤ C • p :=
230
232
begin
231
233
split; intros h i,
@@ -235,8 +237,8 @@ begin
235
237
simp only [h, finset.sup_singleton],
236
238
end
237
239
238
- lemma is_bounded_sup {p : ι → seminorm 𝕜 E} {q : ι' → seminorm 𝕜 F}
239
- {f : E →ₗ[𝕜 ] F} (hf : is_bounded p q f) (s' : finset ι') :
240
+ lemma is_bounded_sup {p : ι → seminorm 𝕜 E} {q : ι' → seminorm 𝕜₂ F}
241
+ {f : E →ₛₗ[σ₁₂ ] F} (hf : is_bounded p q f) (s' : finset ι') :
240
242
∃ (C : ℝ≥0 ) (s : finset ι), 0 < C ∧ (s'.sup q).comp f ≤ C • (s.sup p) :=
241
243
begin
242
244
classical,
@@ -455,13 +457,15 @@ section continuous_bounded
455
457
456
458
namespace seminorm
457
459
458
- variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [add_comm_group F] [module 𝕜 F]
460
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E]
461
+ variables [normed_field 𝕜₂] [add_comm_group F] [module 𝕜₂ F]
462
+ variables {σ₁₂ : 𝕜 →+* 𝕜₂} [ring_hom_isometric σ₁₂]
459
463
variables [nonempty ι] [nonempty ι']
460
464
461
- lemma continuous_of_continuous_comp {q : seminorm_family 𝕜 F ι'}
465
+ lemma continuous_of_continuous_comp {q : seminorm_family 𝕜₂ F ι'}
462
466
[topological_space E] [topological_add_group E]
463
467
[topological_space F] [topological_add_group F] (hq : with_seminorms q)
464
- (f : E →ₗ[𝕜 ] F) (hf : ∀ i, continuous ((q i).comp f)) : continuous f :=
468
+ (f : E →ₛₗ[σ₁₂ ] F) (hf : ∀ i, continuous ((q i).comp f)) : continuous f :=
465
469
begin
466
470
refine continuous_of_continuous_at_zero f _,
467
471
simp_rw [continuous_at, f.map_zero, q.with_seminorms_iff_nhds_eq_infi.mp hq, filter.tendsto_infi,
@@ -471,17 +475,17 @@ begin
471
475
exact (map_zero _).symm
472
476
end
473
477
474
- lemma continuous_iff_continuous_comp [normed_algebra ℝ 𝕜] [module ℝ F] [is_scalar_tower ℝ 𝕜 F]
475
- {q : seminorm_family 𝕜 F ι'} [topological_space E] [topological_add_group E]
478
+ lemma continuous_iff_continuous_comp [normed_algebra ℝ 𝕜₂ ] [module ℝ F] [is_scalar_tower ℝ 𝕜₂ F]
479
+ {q : seminorm_family 𝕜₂ F ι'} [topological_space E] [topological_add_group E]
476
480
[topological_space F] [topological_add_group F] [has_continuous_const_smul ℝ F]
477
- (hq : with_seminorms q) (f : E →ₗ[𝕜 ] F) :
481
+ (hq : with_seminorms q) (f : E →ₛₗ[σ₁₂ ] F) :
478
482
continuous f ↔ ∀ i, continuous ((q i).comp f) :=
479
483
⟨λ h i, continuous.comp (hq.continuous_seminorm i) h, continuous_of_continuous_comp hq f⟩
480
484
481
- lemma continuous_from_bounded {p : seminorm_family 𝕜 E ι} {q : seminorm_family 𝕜 F ι'}
485
+ lemma continuous_from_bounded {p : seminorm_family 𝕜 E ι} {q : seminorm_family 𝕜₂ F ι'}
482
486
[topological_space E] [topological_add_group E] (hp : with_seminorms p)
483
487
[topological_space F] [topological_add_group F] (hq : with_seminorms q)
484
- (f : E →ₗ[𝕜 ] F) (hf : seminorm.is_bounded p q f) : continuous f :=
488
+ (f : E →ₛₗ[σ₁₂ ] F) (hf : seminorm.is_bounded p q f) : continuous f :=
485
489
begin
486
490
refine continuous_of_continuous_comp hq _ (λ i, seminorm.continuous_of_continuous_at_zero _),
487
491
rw [metric.continuous_at_iff', map_zero],
@@ -496,19 +500,19 @@ begin
496
500
refl
497
501
end
498
502
499
- lemma cont_with_seminorms_normed_space (F) [seminormed_add_comm_group F] [normed_space 𝕜 F]
503
+ lemma cont_with_seminorms_normed_space (F) [seminormed_add_comm_group F] [normed_space 𝕜₂ F]
500
504
[uniform_space E] [uniform_add_group E]
501
- {p : ι → seminorm 𝕜 E} (hp : with_seminorms p) (f : E →ₗ[𝕜 ] F)
502
- (hf : ∃ (s : finset ι) C : ℝ≥0 , C ≠ 0 ∧ (norm_seminorm 𝕜 F).comp f ≤ C • s.sup p) :
505
+ {p : ι → seminorm 𝕜 E} (hp : with_seminorms p) (f : E →ₛₗ[σ₁₂ ] F)
506
+ (hf : ∃ (s : finset ι) C : ℝ≥0 , C ≠ 0 ∧ (norm_seminorm 𝕜₂ F).comp f ≤ C • s.sup p) :
503
507
continuous f :=
504
508
begin
505
509
rw ←seminorm.is_bounded_const (fin 1 ) at hf,
506
- exact continuous_from_bounded hp (norm_with_seminorms 𝕜 F) f hf,
510
+ exact continuous_from_bounded hp (norm_with_seminorms 𝕜₂ F) f hf,
507
511
end
508
512
509
513
lemma cont_normed_space_to_with_seminorms (E) [seminormed_add_comm_group E] [normed_space 𝕜 E]
510
514
[uniform_space F] [uniform_add_group F]
511
- {q : ι → seminorm 𝕜 F} (hq : with_seminorms q) (f : E →ₗ[𝕜 ] F)
515
+ {q : ι → seminorm 𝕜₂ F} (hq : with_seminorms q) (f : E →ₛₗ[σ₁₂ ] F)
512
516
(hf : ∀ i : ι, ∃ C : ℝ≥0 , C ≠ 0 ∧ (q i).comp f ≤ C • (norm_seminorm 𝕜 E)) : continuous f :=
513
517
begin
514
518
rw ←seminorm.const_is_bounded (fin 1 ) at hf,
@@ -562,19 +566,21 @@ end normed_space
562
566
563
567
section topological_constructions
564
568
565
- variables [normed_field 𝕜] [add_comm_group F] [module 𝕜 F] [add_comm_group E] [module 𝕜 E]
569
+ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E]
570
+ variables [normed_field 𝕜₂] [add_comm_group F] [module 𝕜₂ F]
571
+ variables {σ₁₂ : 𝕜 →+* 𝕜₂} [ring_hom_isometric σ₁₂]
566
572
567
573
/-- The family of seminorms obtained by composing each seminorm by a linear map. -/
568
- def seminorm_family.comp (q : seminorm_family 𝕜 F ι) (f : E →ₗ[𝕜 ] F) :
574
+ def seminorm_family.comp (q : seminorm_family 𝕜₂ F ι) (f : E →ₛₗ[σ₁₂ ] F) :
569
575
seminorm_family 𝕜 E ι :=
570
576
λ i, (q i).comp f
571
577
572
- lemma seminorm_family.comp_apply (q : seminorm_family 𝕜 F ι) (i : ι) (f : E →ₗ[𝕜 ] F) :
578
+ lemma seminorm_family.comp_apply (q : seminorm_family 𝕜₂ F ι) (i : ι) (f : E →ₛₗ[σ₁₂ ] F) :
573
579
q.comp f i = (q i).comp f :=
574
580
rfl
575
581
576
- lemma seminorm_family.finset_sup_comp (q : seminorm_family 𝕜 F ι) (s : finset ι)
577
- (f : E →ₗ[𝕜 ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
582
+ lemma seminorm_family.finset_sup_comp (q : seminorm_family 𝕜₂ F ι) (s : finset ι)
583
+ (f : E →ₛₗ[σ₁₂ ] F) : (s.sup q).comp f = s.sup (q.comp f) :=
578
584
begin
579
585
ext x,
580
586
rw [seminorm.comp_apply, seminorm.finset_sup_apply, seminorm.finset_sup_apply],
583
589
584
590
variables [topological_space F] [topological_add_group F]
585
591
586
- lemma linear_map.with_seminorms_induced [hι : nonempty ι] {q : seminorm_family 𝕜 F ι}
587
- (hq : with_seminorms q) (f : E →ₗ[𝕜 ] F) :
592
+ lemma linear_map.with_seminorms_induced [hι : nonempty ι] {q : seminorm_family 𝕜₂ F ι}
593
+ (hq : with_seminorms q) (f : E →ₛₗ[σ₁₂ ] F) :
588
594
@with_seminorms 𝕜 E ι _ _ _ _ (q.comp f) (induced f infer_instance) :=
589
595
begin
590
596
letI : topological_space E := induced f infer_instance,
@@ -595,8 +601,8 @@ begin
595
601
exact filter.comap_comap
596
602
end
597
603
598
- lemma inducing.with_seminorms [hι : nonempty ι] {q : seminorm_family 𝕜 F ι}
599
- (hq : with_seminorms q) [topological_space E] {f : E →ₗ[𝕜 ] F} (hf : inducing f) :
604
+ lemma inducing.with_seminorms [hι : nonempty ι] {q : seminorm_family 𝕜₂ F ι}
605
+ (hq : with_seminorms q) [topological_space E] {f : E →ₛₗ[σ₁₂ ] F} (hf : inducing f) :
600
606
with_seminorms (q.comp f) :=
601
607
begin
602
608
rw hf.induced,
0 commit comments