|
| 1 | +/- |
| 2 | +Copyright (c) 2017 Microsoft Corporation. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Leonardo de Moura, Mario Carneiro |
| 5 | +-/ |
| 6 | +import data.list.basic data.buffer |
| 7 | + |
| 8 | +universes u w |
| 9 | + |
| 10 | +namespace array |
| 11 | +variables {α : Type u} {β : Type w} {n : nat} |
| 12 | + |
| 13 | +protected def ext : ∀ {a b : array α n} (h : ∀ i, read a i = read b i), a = b |
| 14 | +| ⟨f⟩ ⟨g⟩ h := congr_arg array.mk (funext h) |
| 15 | + |
| 16 | +lemma read_write (a : array α n) (i j : fin n) (v : α) : |
| 17 | + read (write a i v) j = if i = j then v else a.read j := rfl |
| 18 | + |
| 19 | +lemma read_write_eq (a : array α n) (i : fin n) (v : α) : |
| 20 | + read (write a i v) i = v := |
| 21 | +by rw [read_write, if_pos rfl] |
| 22 | + |
| 23 | +lemma read_write_ne (a : array α n) (i j : fin n) (v : α) (h : i ≠ j) : |
| 24 | + read (write a i v) j = read a j := |
| 25 | +by rw [read_write, if_neg h] |
| 26 | + |
| 27 | +theorem rev_list_reverse_core (a : array α n) : Π i (h : i ≤ n) (t : list α), |
| 28 | + (a.iterate_aux (λ _ v l, v :: l) i h []).reverse_core t = a.rev_iterate_aux (λ _ v l, v :: l) i h t |
| 29 | +| 0 h t := rfl |
| 30 | +| (i+1) h t := rev_list_reverse_core i _ _ |
| 31 | + |
| 32 | +theorem rev_list_reverse (a : array α n) : a.rev_list.reverse = a.to_list := |
| 33 | +rev_list_reverse_core a _ _ _ |
| 34 | + |
| 35 | +theorem to_list_reverse (a : array α n) : a.to_list.reverse = a.rev_list := |
| 36 | +by rw [← rev_list_reverse, list.reverse_reverse] |
| 37 | + |
| 38 | +theorem rev_list_length_aux (a : array α n) (i h) : (a.iterate_aux (λ _ v l, v :: l) i h []).length = i := |
| 39 | +by induction i; simp [*, iterate_aux] |
| 40 | + |
| 41 | +theorem rev_list_length (a : array α n) : a.rev_list.length = n := |
| 42 | +rev_list_length_aux a _ _ |
| 43 | + |
| 44 | +theorem to_list_length (a : array α n) : a.to_list.length = n := |
| 45 | +by rw[← rev_list_reverse, list.length_reverse, rev_list_length] |
| 46 | + |
| 47 | +theorem to_list_nth_core (a : array α n) (i : ℕ) (ih : i < n) : Π (j) {jh t h'}, |
| 48 | + (∀k tl, j + k = i → list.nth_le t k tl = a.read ⟨i, ih⟩) → (a.rev_iterate_aux (λ _ v l, v :: l) j jh t).nth_le i h' = a.read ⟨i, ih⟩ |
| 49 | +| 0 _ _ _ al := al i _ $ zero_add _ |
| 50 | +| (j+1) jh t h' al := to_list_nth_core j $ λk tl hjk, |
| 51 | + show list.nth_le (a.read ⟨j, jh⟩ :: t) k tl = a.read ⟨i, ih⟩, from |
| 52 | + match k, hjk, tl with |
| 53 | + | 0, e, tl := match i, e, ih with ._, rfl, _ := rfl end |
| 54 | + | k'+1, _, tl := by simp[list.nth_le]; exact al _ _ (by simp [*]) |
| 55 | + end |
| 56 | + |
| 57 | +theorem to_list_nth (a : array α n) (i : ℕ) (h h') : list.nth_le a.to_list i h' = a.read ⟨i, h⟩ := |
| 58 | +to_list_nth_core _ _ _ _ (λk tl, absurd tl $ nat.not_lt_zero _) |
| 59 | + |
| 60 | +theorem mem_iff_rev_list_mem_core (a : array α n) (v : α) : Π i (h : i ≤ n), |
| 61 | + (∃ (j : fin n), j.1 < i ∧ read a j = v) ↔ v ∈ a.iterate_aux (λ _ v l, v :: l) i h [] |
| 62 | +| 0 _ := ⟨λ⟨_, n, _⟩, absurd n $ nat.not_lt_zero _, false.elim⟩ |
| 63 | +| (i+1) h := let IH := mem_iff_rev_list_mem_core i (le_of_lt h) in |
| 64 | + ⟨λ⟨j, ji1, e⟩, or.elim (lt_or_eq_of_le $ nat.le_of_succ_le_succ ji1) |
| 65 | + (λji, list.mem_cons_of_mem _ $ IH.1 ⟨j, ji, e⟩) |
| 66 | + (λje, by simp[iterate_aux]; apply or.inl; have H : j = ⟨i, h⟩ := fin.eq_of_veq je; rwa [← H, e]), |
| 67 | + λm, begin |
| 68 | + simp[iterate_aux, list.mem] at m, |
| 69 | + cases m with e m', |
| 70 | + exact ⟨⟨i, h⟩, nat.lt_succ_self _, eq.symm e⟩, |
| 71 | + exact let ⟨j, ji, e⟩ := IH.2 m' in |
| 72 | + ⟨j, nat.le_succ_of_le ji, e⟩ |
| 73 | + end⟩ |
| 74 | + |
| 75 | +theorem mem_iff_rev_list_mem (a : array α n) (v : α) : v ∈ a ↔ v ∈ a.rev_list := |
| 76 | +iff.trans |
| 77 | + (exists_congr $ λj, iff.symm $ show j.1 < n ∧ read a j = v ↔ read a j = v, from and_iff_right j.2) |
| 78 | + (mem_iff_rev_list_mem_core a v _ _) |
| 79 | + |
| 80 | +theorem mem_iff_list_mem (a : array α n) (v : α) : v ∈ a ↔ v ∈ a.to_list := |
| 81 | +by rw [← rev_list_reverse]; simp[mem_iff_rev_list_mem] |
| 82 | + |
| 83 | +@[simp] theorem to_list_to_array (a : array α n) : a.to_list.to_array == a := |
| 84 | +have array.mk (λ (v : fin n), list.nth_le (to_list a) (v.val) (eq.rec_on (eq.symm (to_list_length a)) (v.is_lt))) = a, from |
| 85 | +match a with ⟨f⟩ := congr_arg array.mk $ funext $ λ⟨i, h⟩, to_list_nth ⟨f⟩ i h _ end, |
| 86 | +heq_of_heq_of_eq |
| 87 | + (@eq.drec_on _ _ (λm (e : a.to_list.length = m), (array.mk (λv, a.to_list.nth_le v.1 v.2)) == |
| 88 | + (@array.mk α m $ λv, a.to_list.nth_le v.1 (eq.rec_on (eq.symm e) v.2))) _ a.to_list_length (heq.refl _)) this |
| 89 | + |
| 90 | +@[simp] theorem to_array_to_list (l : list α) : l.to_array.to_list = l := |
| 91 | +list.ext_le (to_list_length _) $ λn h1 h2, to_list_nth _ _ _ _ |
| 92 | + |
| 93 | +lemma push_back_rev_list_core (a : array α n) (v : α) : |
| 94 | + ∀ i h h', |
| 95 | + iterate_aux (a.push_back v) (λ_, list.cons) i h [] = |
| 96 | + iterate_aux a (λ_, list.cons) i h' [] |
| 97 | +| 0 h h' := rfl |
| 98 | +| (i+1) h h' := begin |
| 99 | + simp [iterate_aux]; rw push_back_rev_list_core, |
| 100 | + apply congr_fun, apply congr_arg, |
| 101 | + dsimp [read, push_back], |
| 102 | + rw [dif_neg], refl, |
| 103 | + exact ne_of_lt h' |
| 104 | +end |
| 105 | + |
| 106 | +@[simp] theorem push_back_rev_list (a : array α n) (v : α) : |
| 107 | + (a.push_back v).rev_list = v :: a.rev_list := |
| 108 | +begin |
| 109 | + unfold push_back rev_list foldl iterate, dsimp [iterate_aux, read, push_back], |
| 110 | + rw [dif_pos (eq.refl n)], apply congr_arg, |
| 111 | + apply push_back_rev_list_core |
| 112 | +end |
| 113 | + |
| 114 | +@[simp] theorem push_back_to_list (a : array α n) (v : α) : |
| 115 | + (a.push_back v).to_list = a.to_list ++ [v] := |
| 116 | +by rw [← rev_list_reverse, ← rev_list_reverse, push_back_rev_list, |
| 117 | + list.reverse_cons, list.concat_eq_append] |
| 118 | + |
| 119 | +def read_foreach_aux (f : fin n → α → α) (ai : array α n) : |
| 120 | + ∀ i h (a : array α n) (j : fin n), j.1 < i → |
| 121 | + (iterate_aux ai (λ i v a', write a' i (f i v)) i h a).read j = f j (ai.read j) |
| 122 | +| 0 hi a ⟨j, hj⟩ ji := absurd ji (nat.not_lt_zero _) |
| 123 | +| (i+1) hi a ⟨j, hj⟩ ji := begin |
| 124 | + dsimp [iterate_aux], dsimp at ji, |
| 125 | + change ite _ _ _ = _, |
| 126 | + by_cases (⟨i, hi⟩ : fin _) = ⟨j, hj⟩ with e; simp [e], |
| 127 | + rw [read_foreach_aux _ _ _ ⟨j, hj⟩], |
| 128 | + exact (lt_or_eq_of_le (nat.le_of_lt_succ ji)).resolve_right |
| 129 | + (ne.symm $ mt (@fin.eq_of_veq _ ⟨i, hi⟩ ⟨j, hj⟩) e) |
| 130 | +end |
| 131 | + |
| 132 | +def read_foreach (a : array α n) (f : fin n → α → α) (i : fin n) : |
| 133 | + (foreach a f).read i = f i (a.read i) := |
| 134 | +read_foreach_aux _ _ _ _ _ _ i.2 |
| 135 | + |
| 136 | +def read_map (f : α → α) (a : array α n) (i : fin n) : |
| 137 | + (map f a).read i = f (a.read i) := |
| 138 | +read_foreach _ _ _ |
| 139 | + |
| 140 | +def read_map₂ (f : α → α → α) (a b : array α n) (i : fin n) : |
| 141 | + (map₂ f a b).read i = f (a.read i) (b.read i) := |
| 142 | +read_foreach _ _ _ |
| 143 | + |
| 144 | +instance [decidable_eq α] : decidable_eq (array α n) := λ a b, |
| 145 | +suffices to_list a = to_list b → a = b, from |
| 146 | +decidable_of_decidable_of_iff (by apply_instance) ⟨this, congr_arg to_list⟩, |
| 147 | +λ h, eq_of_heq $ a.to_list_to_array.symm.trans $ |
| 148 | +match to_list a, h with ._, rfl := b.to_list_to_array end |
| 149 | + |
| 150 | +end array |
| 151 | + |
| 152 | +instance (α) [decidable_eq α] : decidable_eq (buffer α) := |
| 153 | +by tactic.mk_dec_eq_instance |
0 commit comments