This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +13
-4
lines changed Expand file tree Collapse file tree 2 files changed +13
-4
lines changed Original file line number Diff line number Diff line change @@ -68,6 +68,14 @@ lemma eventually_at_top {α} [semilattice_sup α] [nonempty α] {p : α → Prop
68
68
(∀ᶠ x in at_top, p x) ↔ (∃ a, ∀ b ≥ a, p b) :=
69
69
by simp only [filter.eventually, filter.mem_at_top_sets, mem_set_of_eq]
70
70
71
+ lemma order_top.at_top_eq (α) [order_top α] : (at_top : filter α) = pure ⊤ :=
72
+ le_antisymm (le_pure_iff.2 $ mem_sets_of_superset (mem_at_top ⊤) $ λ b, top_unique)
73
+ (le_infi $ λ b, le_principal_iff.2 le_top)
74
+
75
+ lemma tendsto_at_top_pure {α} [order_top α] (f : α → β) :
76
+ tendsto f at_top (pure $ f ⊤) :=
77
+ (order_top.at_top_eq α).symm ▸ tendsto_pure_pure _ _
78
+
71
79
@[nolint ge_or_gt]
72
80
lemma eventually.exists_forall_of_at_top {α} [semilattice_sup α] [nonempty α] {p : α → Prop }
73
81
(h : ∀ᶠ x in at_top, p x) : ∃ a, ∀ b ≥ a, p b :=
Original file line number Diff line number Diff line change @@ -552,10 +552,11 @@ assume a s hs, mem_pure_sets.2 $ mem_of_nhds hs
552
552
553
553
lemma tendsto_pure_nhds {α : Type *} [topological_space β] (f : α → β) (a : α) :
554
554
tendsto f (pure a) (𝓝 (f a)) :=
555
- begin
556
- rw [tendsto, filter.map_pure],
557
- exact pure_le_nhds (f a)
558
- end
555
+ tendsto_le_right (pure_le_nhds _) (tendsto_pure_pure f a)
556
+
557
+ lemma order_top.tendsto_at_top {α : Type *} [order_top α] [topological_space β] (f : α → β) :
558
+ tendsto f at_top (𝓝 $ f ⊤) :=
559
+ tendsto_le_right (pure_le_nhds _) $ tendsto_at_top_pure f
559
560
560
561
@[simp] lemma nhds_ne_bot {a : α} : 𝓝 a ≠ ⊥ :=
561
562
ne_bot_of_le_ne_bot pure_ne_bot (pure_le_nhds a)
You can’t perform that action at this time.
0 commit comments