Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit adb6142

Browse files
committed
refactor(topology/algebra/infinite_sum): generalize tsum_zero (#15786)
Thanks to @kbuzzard and @b-mehta, it holds whenever `is_closed {0}`. This is true not just as `t2_space` as before, but in all `t1_space`.
1 parent 0672fa4 commit adb6142

File tree

1 file changed

+18
-2
lines changed

1 file changed

+18
-2
lines changed

src/topology/algebra/infinite_sum.lean

Lines changed: 18 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -414,6 +414,24 @@ lemma tsum_congr_subtype (f : β → α) {s t : set β} (h : s = t) :
414414
∑' (x : s), f x = ∑' (x : t), f x :=
415415
by rw h
416416

417+
lemma tsum_zero' (hz : is_closed ({0} : set α)) : ∑' b : β, (0 : α) = 0 :=
418+
begin
419+
classical,
420+
rw [tsum, dif_pos summable_zero],
421+
suffices : ∀ (x : α), has_sum (λ (b : β), (0 : α)) x → x = 0,
422+
{ exact this _ (classical.some_spec _) },
423+
intros x hx,
424+
contrapose! hx,
425+
simp only [has_sum, tendsto_nhds, finset.sum_const_zero, filter.mem_at_top_sets, ge_iff_le,
426+
finset.le_eq_subset, set.mem_preimage, not_forall, not_exists, exists_prop,
427+
exists_and_distrib_right],
428+
refine ⟨{0}ᶜ, ⟨is_open_compl_iff.mpr hz, _⟩, λ y, ⟨⟨y, subset_refl _⟩, _⟩⟩,
429+
{ simpa using hx },
430+
{ simp }
431+
end
432+
433+
@[simp] lemma tsum_zero [t1_space α] : ∑' b : β, (0 : α) = 0 := tsum_zero' is_closed_singleton
434+
417435
variables [t2_space α] {f g : β → α} {a a₁ a₂ : α}
418436

419437
lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a :=
@@ -422,8 +440,6 @@ lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a :=
422440
lemma summable.has_sum_iff (h : summable f) : has_sum f a ↔ ∑'b, f b = a :=
423441
iff.intro has_sum.tsum_eq (assume eq, eq ▸ h.has_sum)
424442

425-
@[simp] lemma tsum_zero : ∑'b:β, (0:α) = 0 := has_sum_zero.tsum_eq
426-
427443
@[simp] lemma tsum_empty [is_empty β] : ∑'b, f b = 0 := has_sum_empty.tsum_eq
428444

429445
lemma tsum_eq_sum {f : β → α} {s : finset β} (hf : ∀b∉s, f b = 0) :

0 commit comments

Comments
 (0)