@@ -414,6 +414,24 @@ lemma tsum_congr_subtype (f : β → α) {s t : set β} (h : s = t) :
414
414
∑' (x : s), f x = ∑' (x : t), f x :=
415
415
by rw h
416
416
417
+ lemma tsum_zero' (hz : is_closed ({0 } : set α)) : ∑' b : β, (0 : α) = 0 :=
418
+ begin
419
+ classical,
420
+ rw [tsum, dif_pos summable_zero],
421
+ suffices : ∀ (x : α), has_sum (λ (b : β), (0 : α)) x → x = 0 ,
422
+ { exact this _ (classical.some_spec _) },
423
+ intros x hx,
424
+ contrapose! hx,
425
+ simp only [has_sum, tendsto_nhds, finset.sum_const_zero, filter.mem_at_top_sets, ge_iff_le,
426
+ finset.le_eq_subset, set.mem_preimage, not_forall, not_exists, exists_prop,
427
+ exists_and_distrib_right],
428
+ refine ⟨{0 }ᶜ, ⟨is_open_compl_iff.mpr hz, _⟩, λ y, ⟨⟨y, subset_refl _⟩, _⟩⟩,
429
+ { simpa using hx },
430
+ { simp }
431
+ end
432
+
433
+ @[simp] lemma tsum_zero [t1_space α] : ∑' b : β, (0 : α) = 0 := tsum_zero' is_closed_singleton
434
+
417
435
variables [t2_space α] {f g : β → α} {a a₁ a₂ : α}
418
436
419
437
lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a :=
@@ -422,8 +440,6 @@ lemma has_sum.tsum_eq (ha : has_sum f a) : ∑'b, f b = a :=
422
440
lemma summable.has_sum_iff (h : summable f) : has_sum f a ↔ ∑'b, f b = a :=
423
441
iff.intro has_sum.tsum_eq (assume eq, eq ▸ h.has_sum)
424
442
425
- @[simp] lemma tsum_zero : ∑'b:β, (0 :α) = 0 := has_sum_zero.tsum_eq
426
-
427
443
@[simp] lemma tsum_empty [is_empty β] : ∑'b, f b = 0 := has_sum_empty.tsum_eq
428
444
429
445
lemma tsum_eq_sum {f : β → α} {s : finset β} (hf : ∀b∉s, f b = 0 ) :
0 commit comments