Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ade8889

Browse files
committed
feat(algebra/algebra/basic): An algebra isomorphism induces a group isomorphism between automorphism groups (#6622)
Constructs the group isomorphism induced from an algebra isomorphism. Co-authored-by: tb65536 <tb65536@users.noreply.github.com>
1 parent 552ebeb commit ade8889

File tree

1 file changed

+19
-0
lines changed

1 file changed

+19
-0
lines changed

src/algebra/algebra/basic.lean

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -911,6 +911,25 @@ instance aut : group (A₁ ≃ₐ[R] A₁) :=
911911
inv := symm,
912912
mul_left_inv := λ ϕ, by { ext, exact symm_apply_apply ϕ a } }
913913

914+
@[simp] lemma mul_apply (e₁ e₂ : A₁ ≃ₐ[R] A₁) (x : A₁) : (e₁ * e₂) x = e₁ (e₂ x) := rfl
915+
916+
/-- An algebra isomorphism induces a group isomorphism between automorphism groups -/
917+
@[simps apply]
918+
def aut_congr (ϕ : A₁ ≃ₐ[R] A₂) : (A₁ ≃ₐ[R] A₁) ≃* (A₂ ≃ₐ[R] A₂) :=
919+
{ to_fun := λ ψ, ϕ.symm.trans (ψ.trans ϕ),
920+
inv_fun := λ ψ, ϕ.trans (ψ.trans ϕ.symm),
921+
left_inv := λ ψ, by { ext, simp_rw [trans_apply, symm_apply_apply] },
922+
right_inv := λ ψ, by { ext, simp_rw [trans_apply, apply_symm_apply] },
923+
map_mul' := λ ψ χ, by { ext, simp only [mul_apply, trans_apply, symm_apply_apply] } }
924+
925+
@[simp] lemma aut_congr_refl : aut_congr (alg_equiv.refl) = mul_equiv.refl (A₁ ≃ₐ[R] A₁) :=
926+
by { ext, refl }
927+
928+
@[simp] lemma aut_congr_symm (ϕ : A₁ ≃ₐ[R] A₂) : (aut_congr ϕ).symm = aut_congr ϕ.symm := rfl
929+
930+
@[simp] lemma aut_congr_trans (ϕ : A₁ ≃ₐ[R] A₂) (ψ : A₂ ≃ₐ[R] A₃) :
931+
(aut_congr ϕ).trans (aut_congr ψ) = aut_congr (ϕ.trans ψ) := rfl
932+
914933
end semiring
915934

916935
section comm_semiring

0 commit comments

Comments
 (0)