@@ -1510,46 +1510,89 @@ lemma times_cont_mdiff_within_at.prod_mk {f : M → M'} {g : M → N'}
1510
1510
(hf : times_cont_mdiff_within_at I I' n f s x) (hg : times_cont_mdiff_within_at I J' n g s x) :
1511
1511
times_cont_mdiff_within_at I (I'.prod J') n (λ x, (f x, g x)) s x :=
1512
1512
begin
1513
- rw times_cont_mdiff_within_at_iff at *,
1514
- refine ⟨hf.1 .prod hg.1 , (hf.2 .mono _).prod (hg.2 .mono _)⟩;
1515
- mfld_set_tac,
1513
+ rw times_cont_mdiff_within_at_iff'' at *,
1514
+ exact ⟨hf.1 .prod hg.1 , hf.2 .prod hg.2 ⟩,
1515
+ end
1516
+
1517
+ lemma times_cont_mdiff_within_at.prod_mk_space {f : M → E'} {g : M → F'}
1518
+ (hf : times_cont_mdiff_within_at I 𝓘(𝕜, E') n f s x)
1519
+ (hg : times_cont_mdiff_within_at I 𝓘(𝕜, F') n g s x) :
1520
+ times_cont_mdiff_within_at I 𝓘(𝕜, E' × F') n (λ x, (f x, g x)) s x :=
1521
+ begin
1522
+ rw times_cont_mdiff_within_at_iff'' at *,
1523
+ exact ⟨hf.1 .prod hg.1 , hf.2 .prod hg.2 ⟩,
1516
1524
end
1517
1525
1518
1526
lemma times_cont_mdiff_at.prod_mk {f : M → M'} {g : M → N'}
1519
1527
(hf : times_cont_mdiff_at I I' n f x) (hg : times_cont_mdiff_at I J' n g x) :
1520
1528
times_cont_mdiff_at I (I'.prod J') n (λ x, (f x, g x)) x :=
1521
1529
hf.prod_mk hg
1522
1530
1531
+ lemma times_cont_mdiff_at.prod_mk_space {f : M → E'} {g : M → F'}
1532
+ (hf : times_cont_mdiff_at I 𝓘(𝕜, E') n f x) (hg : times_cont_mdiff_at I 𝓘(𝕜, F') n g x) :
1533
+ times_cont_mdiff_at I 𝓘(𝕜, E' × F') n (λ x, (f x, g x)) x :=
1534
+ hf.prod_mk_space hg
1535
+
1523
1536
lemma times_cont_mdiff_on.prod_mk {f : M → M'} {g : M → N'}
1524
1537
(hf : times_cont_mdiff_on I I' n f s) (hg : times_cont_mdiff_on I J' n g s) :
1525
1538
times_cont_mdiff_on I (I'.prod J') n (λ x, (f x, g x)) s :=
1526
1539
λ x hx, (hf x hx).prod_mk (hg x hx)
1527
1540
1541
+ lemma times_cont_mdiff_on.prod_mk_space {f : M → E'} {g : M → F'}
1542
+ (hf : times_cont_mdiff_on I 𝓘(𝕜, E') n f s) (hg : times_cont_mdiff_on I 𝓘(𝕜, F') n g s) :
1543
+ times_cont_mdiff_on I 𝓘(𝕜, E' × F') n (λ x, (f x, g x)) s :=
1544
+ λ x hx, (hf x hx).prod_mk_space (hg x hx)
1545
+
1528
1546
lemma times_cont_mdiff.prod_mk {f : M → M'} {g : M → N'}
1529
1547
(hf : times_cont_mdiff I I' n f) (hg : times_cont_mdiff I J' n g) :
1530
1548
times_cont_mdiff I (I'.prod J') n (λ x, (f x, g x)) :=
1531
1549
λ x, (hf x).prod_mk (hg x)
1532
1550
1551
+ lemma times_cont_mdiff.prod_mk_space {f : M → E'} {g : M → F'}
1552
+ (hf : times_cont_mdiff I 𝓘(𝕜, E') n f) (hg : times_cont_mdiff I 𝓘(𝕜, F') n g) :
1553
+ times_cont_mdiff I 𝓘(𝕜, E' × F') n (λ x, (f x, g x)) :=
1554
+ λ x, (hf x).prod_mk_space (hg x)
1555
+
1533
1556
lemma smooth_within_at.prod_mk {f : M → M'} {g : M → N'}
1534
1557
(hf : smooth_within_at I I' f s x) (hg : smooth_within_at I J' g s x) :
1535
1558
smooth_within_at I (I'.prod J') (λ x, (f x, g x)) s x :=
1536
1559
hf.prod_mk hg
1537
1560
1561
+ lemma smooth_within_at.prod_mk_space {f : M → E'} {g : M → F'}
1562
+ (hf : smooth_within_at I 𝓘(𝕜, E') f s x) (hg : smooth_within_at I 𝓘(𝕜, F') g s x) :
1563
+ smooth_within_at I 𝓘(𝕜, E' × F') (λ x, (f x, g x)) s x :=
1564
+ hf.prod_mk_space hg
1565
+
1538
1566
lemma smooth_at.prod_mk {f : M → M'} {g : M → N'}
1539
1567
(hf : smooth_at I I' f x) (hg : smooth_at I J' g x) :
1540
1568
smooth_at I (I'.prod J') (λ x, (f x, g x)) x :=
1541
1569
hf.prod_mk hg
1542
1570
1571
+ lemma smooth_at.prod_mk_space {f : M → E'} {g : M → F'}
1572
+ (hf : smooth_at I 𝓘(𝕜, E') f x) (hg : smooth_at I 𝓘(𝕜, F') g x) :
1573
+ smooth_at I 𝓘(𝕜, E' × F') (λ x, (f x, g x)) x :=
1574
+ hf.prod_mk_space hg
1575
+
1543
1576
lemma smooth_on.prod_mk {f : M → M'} {g : M → N'}
1544
1577
(hf : smooth_on I I' f s) (hg : smooth_on I J' g s) :
1545
1578
smooth_on I (I'.prod J') (λ x, (f x, g x)) s :=
1546
1579
hf.prod_mk hg
1547
1580
1581
+ lemma smooth_on.prod_mk_space {f : M → E'} {g : M → F'}
1582
+ (hf : smooth_on I 𝓘(𝕜, E') f s) (hg : smooth_on I 𝓘(𝕜, F') g s) :
1583
+ smooth_on I 𝓘(𝕜, E' × F') (λ x, (f x, g x)) s :=
1584
+ hf.prod_mk_space hg
1585
+
1548
1586
lemma smooth.prod_mk {f : M → M'} {g : M → N'}
1549
1587
(hf : smooth I I' f) (hg : smooth I J' g) :
1550
1588
smooth I (I'.prod J') (λ x, (f x, g x)) :=
1551
1589
hf.prod_mk hg
1552
1590
1591
+ lemma smooth.prod_mk_space {f : M → E'} {g : M → F'}
1592
+ (hf : smooth I 𝓘(𝕜, E') f) (hg : smooth I 𝓘(𝕜, F') g) :
1593
+ smooth I 𝓘(𝕜, E' × F') (λ x, (f x, g x)) :=
1594
+ hf.prod_mk_space hg
1595
+
1553
1596
end prod_mk
1554
1597
1555
1598
section projections
0 commit comments