This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +7
-2
lines changed Expand file tree Collapse file tree 1 file changed +7
-2
lines changed Original file line number Diff line number Diff line change @@ -27,7 +27,7 @@ theorem succ_inj' {n m : ℕ} : succ n = succ m ↔ n = m :=
27
27
theorem succ_le_succ_iff {m n : ℕ} : succ m ≤ succ n ↔ m ≤ n :=
28
28
⟨le_of_succ_le_succ, succ_le_succ⟩
29
29
30
- lemma zero_max {m : nat} : max 0 m = m :=
30
+ lemma zero_max {m : nat} : max 0 m = m :=
31
31
max_eq_right (zero_le _)
32
32
33
33
theorem max_succ_succ {m n : ℕ} :
@@ -45,7 +45,7 @@ succ_le_succ_iff
45
45
lemma succ_le_iff {m n : ℕ} : succ m ≤ n ↔ m < n :=
46
46
⟨lt_of_succ_le, succ_le_of_lt⟩
47
47
48
- lemma lt_iff_add_one_le {m n : ℕ} : m < n ↔ m + 1 ≤ n :=
48
+ lemma lt_iff_add_one_le {m n : ℕ} : m < n ↔ m + 1 ≤ n :=
49
49
by rw succ_le_iff
50
50
51
51
theorem of_le_succ {n m : ℕ} (H : n ≤ m.succ) : n ≤ m ∨ n = m.succ :=
@@ -1061,4 +1061,9 @@ lemma with_bot.add_eq_one_iff : ∀ {n m : with_bot ℕ}, n + m = 1 ↔ (n = 0
1061
1061
∀ n ≥ m, P n :=
1062
1062
by apply nat.less_than_or_equal.rec h0; exact h1
1063
1063
1064
+ @[elab_as_eliminator]
1065
+ lemma decreasing_induction {P : ℕ → Prop } (h : ∀n, P (n+1 ) → P n) {m n : ℕ} (nm : m ≤ n) (hP : P n) :
1066
+ P m :=
1067
+ by { induction nm with n nm ih, exact hP, exact ih (h _ hP) }
1068
+
1064
1069
end nat
You can’t perform that action at this time.
0 commit comments