@@ -21,7 +21,6 @@ import measure_theory.arithmetic
21
21
structures such that all open sets are measurable; equivalently, `borel α ≤ ‹measurable_space α›`.
22
22
* `borel_space` instances on `empty`, `unit`, `bool`, `nat`, `int`, `rat`;
23
23
* `measurable` and `borel_space` instances on `ℝ`, `ℝ≥0`, `ℝ≥0∞`.
24
- * A measure is `regular` if it is finite on compact sets, inner regular and outer regular.
25
24
26
25
## Main statements
27
26
@@ -1341,88 +1340,6 @@ ae_measurable_comp_iff_of_closed_embedding (λ y : 𝕜, y • c) (closed_embedd
1341
1340
1342
1341
end normed_space
1343
1342
1344
- namespace measure_theory
1345
- namespace measure
1346
-
1347
- variables [topological_space α] {μ : measure α}
1348
-
1349
- /-- A measure `μ` is regular if
1350
- - it is finite on all compact sets;
1351
- - it is outer regular: `μ(A) = inf { μ(U) | A ⊆ U open }` for `A` measurable;
1352
- - it is inner regular: `μ(U) = sup { μ(K) | K ⊆ U compact }` for `U` open. -/
1353
- structure regular (μ : measure α) : Prop :=
1354
- (lt_top_of_is_compact : ∀ {{K : set α}}, is_compact K → μ K < ∞)
1355
- (outer_regular : ∀ {{A : set α}}, measurable_set A →
1356
- (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) ≤ μ A)
1357
- (inner_regular : ∀ {{U : set α}}, is_open U →
1358
- μ U ≤ ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K)
1359
-
1360
- namespace regular
1361
-
1362
- lemma outer_regular_eq (hμ : μ.regular) {{A : set α}}
1363
- (hA : measurable_set A) : (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) = μ A :=
1364
- le_antisymm (hμ.outer_regular hA) $ le_infi $ λ s, le_infi $ λ hs, le_infi $ λ h2s, μ.mono h2s
1365
-
1366
- lemma inner_regular_eq (hμ : μ.regular) {{U : set α}}
1367
- (hU : is_open U) : (⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K) = μ U :=
1368
- le_antisymm (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s) (hμ.inner_regular hU)
1369
-
1370
- lemma exists_compact_not_null (hμ : regular μ) : (∃ K, is_compact K ∧ μ K ≠ 0 ) ↔ μ ≠ 0 :=
1371
- by simp_rw [ne.def, ← measure_univ_eq_zero, ← hμ.inner_regular_eq is_open_univ,
1372
- ennreal.supr_eq_zero, not_forall, exists_prop, subset_univ, true_and]
1373
-
1374
- protected lemma map [opens_measurable_space α] [measurable_space β] [topological_space β]
1375
- [t2_space β] [borel_space β] (hμ : μ.regular) (f : α ≃ₜ β) :
1376
- (measure.map f μ).regular :=
1377
- begin
1378
- have hf := f.measurable,
1379
- have h2f := f.to_equiv.injective.preimage_surjective,
1380
- have h3f := f.to_equiv.surjective,
1381
- split,
1382
- { intros K hK, rw [map_apply hf hK.measurable_set],
1383
- apply hμ.lt_top_of_is_compact, rwa f.compact_preimage },
1384
- { intros A hA, rw [map_apply hf hA, ← hμ.outer_regular_eq (hf hA)],
1385
- refine le_of_eq _, apply infi_congr (preimage f) h2f,
1386
- intro U, apply infi_congr_Prop f.is_open_preimage, intro hU,
1387
- apply infi_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U,
1388
- rw [map_apply hf hU.measurable_set], },
1389
- { intros U hU,
1390
- rw [map_apply hf hU.measurable_set, ← hμ.inner_regular_eq (hU.preimage f.continuous)],
1391
- refine ge_of_eq _, apply supr_congr (preimage f) h2f,
1392
- intro K, apply supr_congr_Prop f.compact_preimage, intro hK,
1393
- apply supr_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U,
1394
- rw [map_apply hf hK.measurable_set] }
1395
- end
1396
-
1397
- protected lemma smul (hμ : μ.regular) {x : ℝ≥0 ∞} (hx : x < ∞) :
1398
- (x • μ).regular :=
1399
- begin
1400
- split,
1401
- { intros K hK, exact ennreal.mul_lt_top hx (hμ.lt_top_of_is_compact hK) },
1402
- { intros A hA, rw [coe_smul],
1403
- refine le_trans _ (ennreal.mul_left_mono $ hμ.outer_regular hA),
1404
- simp only [infi_and'], simp only [infi_subtype'],
1405
- haveI : nonempty {s : set α // is_open s ∧ A ⊆ s} := ⟨⟨set.univ, is_open_univ, subset_univ _⟩⟩,
1406
- rw [ennreal.mul_infi], refl', exact ne_of_lt hx },
1407
- { intros U hU, rw [coe_smul], refine le_trans (ennreal.mul_left_mono $ hμ.inner_regular hU) _,
1408
- simp only [supr_and'], simp only [supr_subtype'],
1409
- rw [ennreal.mul_supr], refl' }
1410
- end
1411
-
1412
- /-- A regular measure in a σ-compact space is σ-finite. -/
1413
- protected lemma sigma_finite [opens_measurable_space α] [t2_space α] [sigma_compact_space α]
1414
- (hμ : regular μ) : sigma_finite μ :=
1415
- ⟨⟨{ set := compact_covering α,
1416
- set_mem := λ n, (is_compact_compact_covering α n).measurable_set,
1417
- finite := λ n, hμ.lt_top_of_is_compact $ is_compact_compact_covering α n,
1418
- spanning := Union_compact_covering α }⟩⟩
1419
-
1420
-
1421
- end regular
1422
-
1423
- end measure
1424
- end measure_theory
1425
-
1426
1343
lemma is_compact.measure_lt_top_of_nhds_within [topological_space α]
1427
1344
{s : set α} {μ : measure α} (h : is_compact s) (hμ : ∀ x ∈ s, μ.finite_at_filter (𝓝[s] x)) :
1428
1345
μ s < ∞ :=
0 commit comments