Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit aeef727

Browse files
committed
chore(set_theory/ordinal/basic): Small style tweaks (#13561)
1 parent efab188 commit aeef727

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

src/set_theory/ordinal/basic.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -467,9 +467,9 @@ end Well_order
467467
isomorphism. -/
468468
instance ordinal.is_equivalent : setoid Well_order :=
469469
{ r := λ ⟨α, r, wo⟩ ⟨β, s, wo'⟩, nonempty (r ≃r s),
470-
iseqv := ⟨λ⟨α, r, _⟩, ⟨rel_iso.refl _⟩,
471-
λ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩, ⟨e.symm⟩,
472-
λ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨e₁⟩ ⟨e₂⟩, ⟨e₁.trans e₂⟩⟩ }
470+
iseqv := ⟨λ ⟨α, r, _⟩, ⟨rel_iso.refl _⟩,
471+
λ ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨e⟩, ⟨e.symm⟩,
472+
λ ⟨α, r, _⟩ ⟨β, s, _⟩ ⟨γ, t, _⟩ ⟨e₁⟩ ⟨e₂⟩, ⟨e₁.trans e₂⟩⟩ }
473473

474474
/-- `ordinal.{u}` is the type of well orders in `Type u`, up to order isomorphism. -/
475475
def ordinal : Type (u + 1) := quotient ordinal.is_equivalent
@@ -503,7 +503,7 @@ theorem type_eq {α β} {r : α → α → Prop} {s : β → β → Prop}
503503
[is_well_order α r] [is_well_order β s] :
504504
type r = type s ↔ nonempty (r ≃r s) := quotient.eq
505505

506-
@[simp] lemma type_lt (o : ordinal) : type ((<) : o.out.α → o.out.α → Prop) = o :=
506+
@[simp] theorem type_lt (o : ordinal) : type ((<) : o.out.α → o.out.α → Prop) = o :=
507507
begin
508508
change type o.out.r = _,
509509
refine eq.trans _ (quotient.out_eq o),

0 commit comments

Comments
 (0)