@@ -46,19 +46,19 @@ with the above definition of "preserves limits".
46
46
47
47
-/
48
48
49
- class preserves_limit (K : J ⥤ C) (F : C ⥤ D) :=
49
+ class preserves_limit (K : J ⥤ C) (F : C ⥤ D) : Type (max u₁ u₂ v) : =
50
50
(preserves : Π {c : cone K}, is_limit c → is_limit (F.map_cone c))
51
- class preserves_colimit (K : J ⥤ C) (F : C ⥤ D) :=
51
+ class preserves_colimit (K : J ⥤ C) (F : C ⥤ D) : Type (max u₁ u₂ v) : =
52
52
(preserves : Π {c : cocone K}, is_colimit c → is_colimit (F.map_cocone c))
53
53
54
- @[class] def preserves_limits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) :=
54
+ @[class] def preserves_limits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) : Type (max u₁ u₂ v) : =
55
55
Π {K : J ⥤ C}, preserves_limit K F
56
- @[class] def preserves_colimits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) :=
56
+ @[class] def preserves_colimits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) : Type (max u₁ u₂ v) : =
57
57
Π {K : J ⥤ C}, preserves_colimit K F
58
58
59
- @[class] def preserves_limits (F : C ⥤ D) :=
59
+ @[class] def preserves_limits (F : C ⥤ D) : Type (max u₁ u₂ (v+ 1 )) : =
60
60
Π {J : Type v} {𝒥 : small_category J}, by exactI preserves_limits_of_shape J F
61
- @[class] def preserves_colimits (F : C ⥤ D) :=
61
+ @[class] def preserves_colimits (F : C ⥤ D) : Type (max u₁ u₂ (v+ 1 )) : =
62
62
Π {J : Type v} {𝒥 : small_category J}, by exactI preserves_colimits_of_shape J F
63
63
64
64
instance preserves_limit_of_preserves_limits_of_shape (F : C ⥤ D)
@@ -122,19 +122,19 @@ Note that again we do not assume a priori that D actually has any
122
122
limits.
123
123
-/
124
124
125
- class reflects_limit (K : J ⥤ C) (F : C ⥤ D) :=
125
+ class reflects_limit (K : J ⥤ C) (F : C ⥤ D) : Type (max u₁ u₂ v) : =
126
126
(reflects : Π {c : cone K}, is_limit (F.map_cone c) → is_limit c)
127
- class reflects_colimit (K : J ⥤ C) (F : C ⥤ D) :=
127
+ class reflects_colimit (K : J ⥤ C) (F : C ⥤ D) : Type (max u₁ u₂ v) : =
128
128
(reflects : Π {c : cocone K}, is_colimit (F.map_cocone c) → is_colimit c)
129
129
130
- @[class] def reflects_limits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) :=
130
+ @[class] def reflects_limits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) : Type (max u₁ u₂ v) : =
131
131
Π {K : J ⥤ C}, reflects_limit K F
132
- @[class] def reflects_colimits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) :=
132
+ @[class] def reflects_colimits_of_shape (J : Type v) [small_category J] (F : C ⥤ D) : Type (max u₁ u₂ v) : =
133
133
Π {K : J ⥤ C}, reflects_colimit K F
134
134
135
- @[class] def reflects_limits (F : C ⥤ D) :=
135
+ @[class] def reflects_limits (F : C ⥤ D) : Type (max u₁ u₂ (v+ 1 )) : =
136
136
Π {J : Type v} {𝒥 : small_category J}, by exactI reflects_limits_of_shape J F
137
- @[class] def reflects_colimits (F : C ⥤ D) :=
137
+ @[class] def reflects_colimits (F : C ⥤ D) : Type (max u₁ u₂ (v+ 1 )) : =
138
138
Π {J : Type v} {𝒥 : small_category J}, by exactI reflects_colimits_of_shape J F
139
139
140
140
instance reflects_limit_of_reflects_limits_of_shape (K : J ⥤ C) (F : C ⥤ D)
0 commit comments