@@ -230,16 +230,16 @@ by rw [mul_comm, sec_spec]
230
230
@[to_additive " Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that
231
231
`f(S) ⊆ add_units N`, for all `w : M, z : N` and `y ∈ S`, we have `w - f y = z ↔ w = f y + z`." ]
232
232
lemma mul_inv_left {f : M →* N} (h : ∀ y : S, is_unit (f y))
233
- (y : S) (w z) : w * ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ = z ↔ w = f y * z :=
233
+ (y : S) (w z) : w * ↑(is_unit.lift_right (f.mrestrict S) h y)⁻¹ = z ↔ w = f y * z :=
234
234
by rw mul_comm; convert units.inv_mul_eq_iff_eq_mul _;
235
- exact (is_unit.coe_lift_right (f.restrict S) h _).symm
235
+ exact (is_unit.coe_lift_right (f.mrestrict S) h _).symm
236
236
237
237
/-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ units N`, for all
238
238
`w : M, z : N` and `y ∈ S`, we have `z = w * (f y)⁻¹ ↔ z * f y = w`. -/
239
239
@[to_additive " Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that
240
240
`f(S) ⊆ add_units N`, for all `w : M, z : N` and `y ∈ S`, we have `z = w - f y ↔ z + f y = w`." ]
241
241
lemma mul_inv_right {f : M →* N} (h : ∀ y : S, is_unit (f y))
242
- (y : S) (w z) : z = w * ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ ↔ z * f y = w :=
242
+ (y : S) (w z) : z = w * ↑(is_unit.lift_right (f.mrestrict S) h y)⁻¹ ↔ z * f y = w :=
243
243
by rw [eq_comm, mul_inv_left h, mul_comm, eq_comm]
244
244
245
245
/-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that
@@ -249,8 +249,8 @@ by rw [eq_comm, mul_inv_left h, mul_comm, eq_comm]
249
249
`f(S) ⊆ add_units N`, for all `x₁ x₂ : M` and `y₁, y₂ ∈ S`, we have
250
250
`f x₁ - f y₁ = f x₂ - f y₂ ↔ f (x₁ + y₂) = f (x₂ + y₁)`." ]
251
251
lemma mul_inv {f : M →* N} (h : ∀ y : S, is_unit (f y)) {x₁ x₂} {y₁ y₂ : S} :
252
- f x₁ * ↑(is_unit.lift_right (f.restrict S) h y₁)⁻¹ =
253
- f x₂ * ↑(is_unit.lift_right (f.restrict S) h y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁) :=
252
+ f x₁ * ↑(is_unit.lift_right (f.mrestrict S) h y₁)⁻¹ =
253
+ f x₂ * ↑(is_unit.lift_right (f.mrestrict S) h y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁) :=
254
254
by rw [mul_inv_right h, mul_assoc, mul_comm _ (f y₂), ←mul_assoc, mul_inv_left h, mul_comm x₂,
255
255
f.map_mul, f.map_mul]
256
256
@@ -259,17 +259,17 @@ by rw [mul_inv_right h, mul_assoc, mul_comm _ (f y₂), ←mul_assoc, mul_inv_le
259
259
@[to_additive " Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that
260
260
`f(S) ⊆ add_units N`, for all `y, z ∈ S`, we have `- (f y) = - (f z) → f y = f z`." ]
261
261
lemma inv_inj {f : M →* N} (hf : ∀ y : S, is_unit (f y)) {y z}
262
- (h : (is_unit.lift_right (f.restrict S) hf y)⁻¹ = (is_unit.lift_right (f.restrict S) hf z)⁻¹) :
262
+ (h : (is_unit.lift_right (f.mrestrict S) hf y)⁻¹ = (is_unit.lift_right (f.mrestrict S) hf z)⁻¹) :
263
263
f y = f z :=
264
264
by rw [←mul_one (f y), eq_comm, ←mul_inv_left hf y (f z) 1 , h];
265
- convert units.inv_mul _; exact (is_unit.coe_lift_right (f.restrict S) hf _).symm
265
+ convert units.inv_mul _; exact (is_unit.coe_lift_right (f.mrestrict S) hf _).symm
266
266
267
267
/-- Given a monoid hom `f : M →* N` and submonoid `S ⊆ M` such that `f(S) ⊆ units N`, for all
268
268
`y ∈ S`, `(f y)⁻¹` is unique. -/
269
269
@[to_additive " Given an add_monoid hom `f : M →+ N` and submonoid `S ⊆ M` such that
270
270
`f(S) ⊆ add_units N`, for all `y ∈ S`, `- (f y)` is unique." ]
271
271
lemma inv_unique {f : M →* N} (h : ∀ y : S, is_unit (f y)) {y : S}
272
- {z} (H : f y * z = 1 ) : ↑(is_unit.lift_right (f.restrict S) h y)⁻¹ = z :=
272
+ {z} (H : f y * z = 1 ) : ↑(is_unit.lift_right (f.mrestrict S) h y)⁻¹ = z :=
273
273
by rw [←one_mul ↑(_)⁻¹, mul_inv_left, ←H]
274
274
275
275
variables (f : localization_map S N)
@@ -292,7 +292,7 @@ f.map_right_cancel $ by rw [mul_comm _ x, mul_comm _ y, h]
292
292
@[to_additive " Given a localization map `f : M →+ N`, the surjection sending `(x, y) : M × S`
293
293
to `f x - f y`." ]
294
294
noncomputable def mk' (f : localization_map S N) (x : M) (y : S) : N :=
295
- f.to_map x * ↑(is_unit.lift_right (f.to_map.restrict S) f.map_units y)⁻¹
295
+ f.to_map x * ↑(is_unit.lift_right (f.to_map.mrestrict S) f.map_units y)⁻¹
296
296
297
297
@[to_additive] lemma mk'_mul (x₁ x₂ : M) (y₁ y₂ : S) :
298
298
f.mk' (x₁ * x₂) (y₁ * y₂) = f.mk' x₁ y₁ * f.mk' x₂ y₂ :=
@@ -399,9 +399,9 @@ by rw [mul_comm, mk'_mul_cancel_right]
399
399
400
400
@[to_additive] lemma is_unit_comp (j : N →* P) (y : S) :
401
401
is_unit (j.comp f.to_map y) :=
402
- ⟨units.map j $ is_unit.lift_right (f.to_map.restrict S) f.map_units y,
402
+ ⟨units.map j $ is_unit.lift_right (f.to_map.mrestrict S) f.map_units y,
403
403
show j _ = j _, from congr_arg j $
404
- (is_unit.coe_lift_right (f.to_map.restrict S) f.map_units _)⟩
404
+ (is_unit.coe_lift_right (f.to_map.mrestrict S) f.map_units _)⟩
405
405
406
406
variables {g : M →* P}
407
407
@@ -414,7 +414,7 @@ lemma eq_of_eq (hg : ∀ y : S, is_unit (g y)) {x y} (h : f.to_map x = f.to_map
414
414
g x = g y :=
415
415
begin
416
416
obtain ⟨c, hc⟩ := f.eq_iff_exists.1 h,
417
- rw [←mul_one (g x), ←is_unit.mul_lift_right_inv (g.restrict S) hg c],
417
+ rw [←mul_one (g x), ←is_unit.mul_lift_right_inv (g.mrestrict S) hg c],
418
418
show _ * (g c * _) = _,
419
419
rw [←mul_assoc, ←g.map_mul, hc, mul_inv_left hg, g.map_mul, mul_comm],
420
420
end
@@ -441,7 +441,7 @@ of `add_comm_monoid`s `g : M →+ P` such that `g y` is invertible for all `y :
441
441
induced from `N` to `P` sending `z : N` to `g x - g y`, where `(x, y) : M × S` are such that
442
442
`z = f x - f y`." ]
443
443
noncomputable def lift : N →* P :=
444
- { to_fun := λ z, g (f.sec z).1 * ↑(is_unit.lift_right (g.restrict S) hg (f.sec z).2 )⁻¹,
444
+ { to_fun := λ z, g (f.sec z).1 * ↑(is_unit.lift_right (g.mrestrict S) hg (f.sec z).2 )⁻¹,
445
445
map_one' := by rw [mul_inv_left, mul_one]; exact f.eq_of_eq hg
446
446
(by rw [←sec_spec, one_mul]),
447
447
map_mul' := λ x y,
@@ -461,7 +461,7 @@ variables {S g}
461
461
of `add_comm_monoid`s `g : M →+ P` such that `g y` is invertible for all `y : S`, the homomorphism
462
462
induced from `N` to `P` maps `f x - f y` to `g x - g y` for all `x : M, y ∈ S`." ]
463
463
lemma lift_mk' (x y) :
464
- f.lift hg (f.mk' x y) = g x * ↑(is_unit.lift_right (g.restrict S) hg y)⁻¹ :=
464
+ f.lift hg (f.mk' x y) = g x * ↑(is_unit.lift_right (g.mrestrict S) hg y)⁻¹ :=
465
465
(mul_inv hg).2 $ f.eq_of_eq hg $ by
466
466
rw [f.to_map.map_mul, f.to_map.map_mul, sec_spec', mul_assoc, f.mk'_spec, mul_comm]
467
467
@@ -585,7 +585,7 @@ begin
585
585
obtain ⟨x, hx⟩ := f.surj z,
586
586
use x,
587
587
rw [←hz, f.eq_mk'_iff_mul_eq.2 hx, lift_mk', mul_assoc, mul_comm _ (g ↑x.2 )],
588
- erw [is_unit.mul_lift_right_inv (g.restrict S) hg, mul_one] },
588
+ erw [is_unit.mul_lift_right_inv (g.mrestrict S) hg, mul_one] },
589
589
{ intros H v,
590
590
obtain ⟨x, hx⟩ := H v,
591
591
use f.mk' x.1 x.2 ,
0 commit comments